题目
题解
思路:
单纯从问题来看,这是一个非常复杂的问题,需要大量的遍历操作。分析得知:每一个位置map[i][j]只可能来自map[i][j-1]向右走一个结点或者map[i-1][j]向下走一个结点,因此只需要比较到达map[i][j-1]和到达map[i-1][j]的路径较小值加上map[i][j]就是所求答案,这时考虑使用递归,但是可知,这种递归处理属于暴力搜索的方式,因为没有对任何已经计算出来的结果进行保存和复用,因此上面这种思路是低效或者不符合要求的,应该使用动态规划来解决问题。
动态规划思想:先求简单值在逐步递推求复杂值,后面的值通过前面的结果来求得。
思路:求出到达每一个结点map[i][j]的最小路径将其保存在数组dp[i][j]中,求任意dp[i][j]的值完全依赖于dp[i-1][j]和dp[i][j-1],因此先求出dp[][]数组的第1行和第1列,然后从上到下,从左到右计算出每一个位置的结果值。
①创建一个二维数组记录每个位置的最小路径dp[n][m];
②求出dp[][]中第1行和第1列的结果填充到dp[][]中;注意:在动态规划问题中第1行和第1列需要手动求出,需要根据问题的要求进行求解,一般第1行和第1列的求解很简单。
③从上到下,从左到右,通过二重循环求出任意dp[i][j]的结果填充到dp[][]中;注意:二重循环中i,j都是从1开始进行遍历,即从矩阵第2行第2列的位置开始填充。
④最后dp[n-1][m-1]就是所求的结果。
代码
public class code64 {
public static int minPathSum(int[][] grid) {
if (grid == null) {
return 0;
}
int m = grid.length;
int n = grid[0].length;
int dp[][] = new int[m][n];
dp[0][0] = grid[0][0];
// first col
for (int i = 1; i < m; i++) {
dp[i][0] = dp[i - 1][0] + grid[i][0];
}
// first row
for (int j = 1; j < n; j++) {
dp[0][j] = dp[0][j - 1] + grid[0][j];
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
}
}
return dp[m - 1][n - 1];
}
public static void main(String[] args) {
int grid[][] = { { 1, 3, 1 }, { 1, 5, 1 }, { 4, 2, 1 } };
int res = minPathSum(grid);
System.out.println(res);
}
}