思路
博弈论模板题.
直接像动态规划一样求出所有的
函数值并异或起来.
这里需要输出方案,枚举和
,取完后若
函数值为
,那么就是合法方案.
复杂度为(
表示
).
代码
#include<bits/stdc++.h> using namespace std; #define i64 long long #define fp( i, b, e ) for ( int i(b), I(e); i <= I; ++i ) #define fd( i, b, e ) for ( int i(b), I(e); i >= I; --i ) #define go( i, b ) for ( int i(b), v(to[i]); i; v = to[i = nxt[i]] ) template<typename T> inline void cmax( T &x, T y ){ x < y ? x = y : x; } template<typename T> inline void cmin( T &x, T y ){ y < x ? x = y : x; } #define getchar() ( p1 == p2 && ( p1 = bf, p2 = bf + fread( bf, 1, 1 << 21, stdin ), p1 == p2 ) ? EOF : *p1++ ) char bf[1 << 21], *p1(bf), *p2(bf); template<typename T> inline void read( T &x ){ char t(getchar()), flg(0); x = 0; for ( ; !isdigit(t); t = getchar() ) flg = t == '-'; for ( ; isdigit(t); t = getchar() ) x = x * 10 + ( t & 15 ); flg ? x = -x : x; } clock_t t_bg, t_ed; int N, M, n, a[15], b[15]; int sg[1005], d[1005]; signed main(){ t_bg = clock(); read(N); fp( i, 1, N ) read(a[i]), cmax(n, a[i]); read(M); fp( i, 1, M ) read(b[i]); sg[0] = 0; fp( i, 1, n ){ fp( j, 1, M ) if ( i >= b[j] ) d[sg[i - b[j]]] = i; else break; fp( j, 0, M ) if ( d[j] != i ){ sg[i] = j; break; } } int ans(0); fp( i, 1, N ) ans ^= sg[a[i]]; if ( ans ){ printf("YES\n"); for ( int i = 1; i <= N; ++i ){ int t(ans ^ sg[a[i]]); fp( j, 1, M ) if ( a[i] >= b[j] && sg[a[i] - b[j]] == t ) return printf( "%d %d\n", i, b[j] ), 0; } }else printf("NO\n"); t_ed = clock(); fprintf( stderr, "\n========info========\ntime : %.3f\n====================\n", (double)( t_ed - t_bg ) / CLOCKS_PER_SEC ); return 0; }