软引用
软引用是使用SoftReference创建的引用,强度弱于强引用,被其引用的对象在内存不足的时候会被回收,不会产生内存溢出。
软引用,顾名思义就是比较“软”一点的引用。
当一个对象与GC Roots之间存在强引用时,无论何时都不会被GC回收掉。如果一个对象与GC Roots之间没有强引用与其关联而存在软引用关联时,那么垃圾回收器对它的态度就取决于内存的紧张程度了。如果内存空间足够,垃圾回收器就不会回收这个对象,但如果内存空间不足了,它就难逃被回收的厄运。
如果一个对象与GC Roots之间不存在强引用,但是存在软引用,则称这个对象为软可达(soft reachable)
对象。
在垃圾回收器没有回收它的时候,软可达对象就像强可达对象一样,可以被程序正常访问和使用,但是需要通过软引用对象间接访问,需要的话也能重新使用强引用将其关联。所以软引用适合用来做内存敏感的高速缓存。
String s = new String("Frank"); // 创建强引用与String对象关联,现在该String对象为强可达状态
SoftReference<String> softRef = new SoftReference<String>(s); // 再创建一个软引用关联该对象
s = null; // 消除强引用,现在只剩下软引用与其关联,该String对象为软可达状态
s = softRef.get(); // 重新关联上强引用
这里变量s持有对字符串对象的强引用,而softRef持有对该对象的软引用,所以当执行s = null后,字符串对象就只剩下软引用了,这时如果因为内存不足发生Full GC,就会把这个字符串对象回收掉。
注意,在垃圾回收器回收一个对象前,SoftReference类所提供的get方***返回Java对象的强引用,一旦垃圾线程回收该对象之后,get方法将返回null。所以在获取软引用对象的代码中,一定要先判断返回是否为null,以免出现NullPointerException异常而导致应用崩溃。
下面的代码会让s再次持有对象的强引用:
s = softRef.get();
如果在softRef指向的对象被回收前,用强引用指向该对象,那这个对象又会变成强可达。
来看一个使用SoftReference的栗子:
public class TestA {
static class OOMClass{
private int[] oom = new int[1024 * 100];// 100KB
}
public static void main(String[] args) throws InterruptedException {
ReferenceQueue<OOMClass> queue = new ReferenceQueue<>();
List<SoftReference> list = new ArrayList<>();
while(true){
for (int i = 0; i < 100; i++) {
list.add(new SoftReference<OOMClass>(new OOMClass(), queue));
}
Thread.sleep(500);
}
}
}
注意,ReferenceQueue中声明的类型为OOMClass,即与SoftReference引用的类型一致。
设置一下虚拟机参数:
-verbose:gc -Xms4m -Xmx4m -Xmn2m
运行结果:
[GC (Allocation Failure) 1017K->432K(3584K), 0.0017239 secs]
[GC (Allocation Failure) 1072K->472K(3584K), 0.0099237 secs]
[GC (Allocation Failure) 1323K->1296K(3584K), 0.0009528 secs]
[GC (Allocation Failure) 2114K->2136K(3584K), 0.0009951 secs]
[Full GC (Ergonomics) 2136K->1992K(3584K), 0.0040658 secs]
[Full GC (Ergonomics) 2807K->2791K(3584K), 0.0036280 secs]
[Full GC (Allocation Failure) 2791K->373K(3584K), 0.0032477 secs]
[Full GC (Ergonomics) 2786K->2773K(3584K), 0.0034554 secs]
[Full GC (Allocation Failure) 2773K->373K(3584K), 0.0032667 secs]
[Full GC (Ergonomics) 2798K->2775K(3584K), 0.0036231 secs]
[Full GC (Allocation Failure) 2775K->375K(3584K), 0.0055482 secs]
[Full GC (Ergonomics) 2799K->2776K(3584K), 0.0031358 secs]
...省略n次GC信息
在TestA中,我们使用死循环不断的往list中添加新对象,如果是强引用,会很快因为内存不足而抛出OOM,因为这里的堆内存大小设置为了4M,而一个对象就有100KB,一个循环添加100个对象,也就是差不多10M,显然一个循环都跑不完就会内存不足,而这里,因为使用的是软引用,所以JVM会在内存不足的时候将软引用回收掉。
[Full GC (Allocation Failure) 2791K->373K(3584K), 0.0032477 secs]
从这一条可以看出,在内存不足发生Full GC时,回收掉了大部分的软引用指向的对象,释放了大量的内存。
因为这里新生代只分配了2M,所以很快就会发生GC,如果你的程序运行没有看到这个结果,请先确认一下虚拟机参数是否设置正确,如果设置正确还是没有看到,那么将循环次数由1000改为10000或者100000在试试看。
使用场景
软引用关联的对象,只有在内存不足的时候JVM才会回收该对象。这一点可以很好地用来解决OOM的问题,并且这个特性很适合用来实现缓存:比如网页缓存、图片缓存等。
现在考虑这样一个场景 ,在很多应用中,都会出现大量的默认图片,比如说QQ的默认头像,应用内的默认图标等等,这些图片很多地方会用到。
如果每次都去读取图片,由于读取文件速度较慢,大量重复的读取会导致性能下降。所以可以考虑将图片缓存起来,需要的时候直接从内存中读取。但是,由于图片占用内存空间比较大,缓存的图片过多会占用比较多的内存,就可能比较容易发生OOM。这时候,软引用就派得上用场了。
注意,SoftReference对象是用来保存软引用的,但它同时也是一个Java对象。所以,当软可及对象被回收之后,虽然这个SoftReference对象的get()方法返回null,但SoftReference对象本身并不是null,而此时这个SoftReference对象已经不再具有存在的价值,需要一个适当的清除机制,避免大量SoftReference对象带来的内存泄漏。
ReferenceQueue就是用来保存这些需要被清理的引用对象的。软引用可以和一个引用队列(ReferenceQueue)联合使用,如果软引用所引用的对象被垃圾回收器回收,Java虚拟机就会把这个软引用加入到与之关联的引用队列中。
下面用SoftReference来实现一个简单的缓存类:
public synchronized void add(T obj){
// 构建软引用
Reference<T> reference = new SoftReference<T>(obj, referenceQueue);
// 加入列表中
list.add(reference);
}
// 获取缓存对象
public synchronized T get(int index){
// 先对无效引用进行清理
clear();
if (index < 0 || list.size() < index){
return null;
}
Reference<T> reference = list.get(index);
return reference == null ? null : reference.get();
}
public int size(){
然后测试一下这个缓存类:
public class SoftCacheTest {
private static int num = 0;
public static void main(String[] args){
SoftCache<OOMClass> softCache = new SoftCache<>();
for (int i = 0; i < 40; i++) {
softCache.add(new OOMClass("OOM Obj-" + ++num));
}
System.out.println(softCache.size());
for (int i = 0; i < softCache.size(); i++) {
OOMClass obj = softCache.get(i);
System.out.println(obj == null ? "null" : obj.name);
}
System.out.println(softCache.size());
}
static class OOMClass{
private String name;
private int[] oom = new int[1024 * 100];// 100KB
public OOMClass(String name) {
this.name = name;
}
}
}
仍使用之前的虚拟机参数
-verbose:gc -Xms4m -Xmx4m -Xmn2m
运行结果:
[GC (Allocation Failure) 1017K->432K(3584K), 0.0012236 secs]
[GC (Allocation Failure) 1117K->496K(3584K), 0.0016875 secs]
[GC (Allocation Failure) 1347K->1229K(3584K), 0.0015059 secs]
[GC (Allocation Failure) 2047K->2125K(3584K), 0.0018090 secs]
[Full GC (Ergonomics) 2125K->1994K(3584K), 0.0054759 secs]
[Full GC (Ergonomics) 2822K->2794K(3584K), 0.0023167 secs]
[Full GC (Allocation Failure) 2794K->376K(3584K), 0.0036056 secs]
[Full GC (Ergonomics) 2795K->2776K(3584K), 0.0042365 secs]
[Full GC (Allocation Failure) 2776K->376K(3584K), 0.0035122 secs]
[Full GC (Ergonomics) 2795K->2776K(3584K), 0.0054760 secs]
[Full GC (Allocation Failure) 2776K->376K(3584K), 0.0036965 secs]
[Full GC (Ergonomics) 2802K->2777K(3584K), 0.0044513 secs]
[Full GC (Allocation Failure) 2777K->376K(3584K), 0.0041400 secs]
[Full GC (Ergonomics) 2796K->2777K(3584K), 0.0025255 secs]
[Full GC (Allocation Failure) 2777K->376K(3584K), 0.0037690 secs]
[Full GC (Ergonomics) 2817K->2777K(3584K), 0.0037759 secs]
[Full GC (Allocation Failure) 2777K->377K(3584K), 0.0042416 secs]
缓存列表大小:40
OOM Obj-37
OOM Obj-38
OOM Obj-39
OOM Obj-40
缓存列表大小:4
可以看到,缓存40个软引用对象之后,如果一次性全部存储,显然内存大小无法满足,所以在不断创建软引用对象的过程中,不断发生GC来进行垃圾回收,最终只有4个软引用未被清理掉。
强引用与软引用对比
没有对比就没有伤害,来将强引用和软引用对比一下:
public class Test {
static class OOMClass{
private int[] oom = new int[1024];
}
public static void main(String[] args) {
testStrongReference();
//testSoftReference();
}
public static void testStrongReference(){
List<OOMClass> list = new ArrayList<>();
for (int i = 0; i < 1000; i++) {
list.add(new OOMClass());
}
}
运行testStrongReference方法的结果如下:
[GC (Allocation Failure) 1019K->384K(3584K), 0.0033595 secs]
[GC (Allocation Failure) 1406K->856K(3584K), 0.0013098 secs]
[GC (Allocation Failure) 1880K->1836K(3584K), 0.0014382 secs]
[Full GC (Ergonomics) 1836K->1756K(3584K), 0.0039761 secs]
[Full GC (Ergonomics) 2778K->2758K(3584K), 0.0021269 secs]
[Full GC (Ergonomics) 2779K->2770K(3584K), 0.0016329 secs]
[Full GC (Ergonomics) 2779K->2775K(3584K), 0.0023157 secs]
[Full GC (Ergonomics) 2775K->2775K(3584K), 0.0015927 secs]
[Full GC (Ergonomics) 3037K->3029K(3584K), 0.0025071 secs]
[Full GC (Ergonomics) 3067K->3065K(3584K), 0.0017529 secs]
[Full GC (Allocation Failure) 3065K->3047K(3584K), 0.0033445 secs]
[Full GC (Ergonomics) 3068K->3059K(3584K), 0.0016623 secs]
[Full GC (Ergonomics) 3070K->3068K(3584K), 0.0028357 secs]
[Full GC (Allocation Failure) 3068K->3068K(3584K), 0.0017616 secs]
java.lang.OutOfMemoryError: Java heap space
Dumping heap to java_pid3352.hprof ...
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
Heap dump file created [3855956 bytes in 0.017 secs]
[Full GC (Ergonomics) 3071K->376K(3584K), 0.0032068 secs]
at reference.Test$OOMClass.<init>(Test.java:11)
at reference.Test.testStrongReference(Test.java:22)
at reference.Test.main(Test.java:15)
Process finished with exit code 1
可以看到,很快就抛出了OOM,原因是Java heap space,也就是堆内存不足。
如果运行testSoftReference方法,将会得到如下结果:
[GC (Allocation Failure) 1019K->464K(3584K), 0.0019850 secs]
[GC (Allocation Failure) 1484K->844K(3584K), 0.0015920 secs]
[GC (Allocation Failure) 1868K->1860K(3584K), 0.0043236 secs]
[Full GC (Ergonomics) 1860K->1781K(3584K), 0.0044581 secs]
[Full GC (Ergonomics) 2802K->2754K(3584K), 0.0041726 secs]
[Full GC (Ergonomics) 2802K->2799K(3584K), 0.0031293 secs]
[Full GC (Ergonomics) 3023K->3023K(3584K), 0.0024830 secs]
[Full GC (Ergonomics) 3071K->3068K(3584K), 0.0035025 secs]
[Full GC (Allocation Failure) 3068K->405K(3584K), 0.0040672 secs]
[GC (Allocation Failure) 1512K->1567K(3584K), 0.0011170 secs]
[Full GC (Ergonomics) 1567K->1496K(3584K), 0.0048438 secs]
可以看到,并没有抛出OOM,而是进行多次了GC,可以明显的看到这一条:
[Full GC (Allocation Failure) 3068K->405K(3584K), 0.0040672 secs]
当内存不足时进行了一次Full GC,回收了大部分内存空间,也就是将大部分软引用指向的对象回收掉了。
小结
- 软引用弱于强引用
- 软引用指向的对象会在内存不足时被垃圾回收清理掉
- JVM会优先回收长时间闲置不用的软引用对象,对那些刚刚构建的或刚刚使用过的软引用对象会尽可能保留
- 软引用可以有效的解决OOM问题
- 软引用适合用作非必须大对象的缓存