蓝魔法师
思路
树上问题求方案数,考虑树形,我们设置表示,当节点联通块数量是时,以为根节点的树上的方案数量。
显然我们可以做一个树上背包来枚举节点的连接情况,每次遍历一颗子树时枚举,要注意背包的枚举顺序均要从大到小开始枚举。
最后再特判一个不与这颗子树相连的特殊情况,也就是。
代码
/* Author : lifehappy */ #pragma GCC optimize(2) #pragma GCC optimize(3) #include <bits/stdc++.h> #define mp make_pair #define pb push_back #define endl '\n' #define mid (l + r >> 1) #define lson rt << 1, l, mid #define rson rt << 1 | 1, mid + 1, r #define ls rt << 1 #define rs rt << 1 | 1 using namespace std; typedef long long ll; typedef unsigned long long ull; typedef pair<int, int> pii; const double pi = acos(-1.0); const double eps = 1e-7; const int inf = 0x3f3f3f3f; inline ll read() { ll x = 0, f = 1; char c = getchar(); while(c < '0' || c > '9') { if(c == '-') f = -1; c = getchar(); } while(c >= '0' && c <= '9') { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return x * f; } const int N = 2e3 + 10, mod = 998244353; vector<int> G[N]; int dp[N][N], sz[N], n, m; void dfs(int rt, int fa) { dp[rt][1] = sz[rt] = 1; for(int i : G[rt]) { if(i == fa) continue; dfs(i, rt); ll sum = 0; for(int j = 1; j <= sz[i] && j <= m; j++) sum = (sum + dp[i][j]) % mod; for(int j = min(m, sz[rt]); j >= 1; j--) { for(int k = min(m, sz[i]); k >= 1; k--) { if(j + k <= m) { dp[rt][j + k] = (dp[rt][j + k] + 1ll * dp[rt][j] * dp[i][k]) % mod; } } dp[rt][j] = (dp[rt][j] * sum) % mod; } sz[rt] += sz[i]; } } int main() { // freopen("in.txt", "r", stdin); // freopen("out.txt", "w", stdout); // ios::sync_with_stdio(false), cin.tie(0), cout.tie(0); n = read(), m = read(); for(int i = 1; i < n; i++) { int x = read(), y = read(); G[x].pb(y); G[y].pb(x); } dfs(1, 0); int ans = 0; for(int i = 1; i <= m && i <= sz[1]; i++) ans = (ans + dp[1][i]) % mod; printf("%d\n", ans); return 0; }