题意
给你一个数字,问你有多少段连续的素数之和等于
题解
通过欧拉筛线性时间得到所有的素数,并且求出他们的前缀和,接着通过双指针来求解方案数
超时思路
本来是用unordered_map来做,但是好像常数太大了,导致超时,后面改成双指针就过了
代码
#include<bits/stdc++.h>
using namespace std;
#define de(x) cerr << #x << " = " << x << endl
#define dd(x) cerr << #x << " = " << x << " "
#define rep(i, a, b) for(int i = a; i < b; ++i)
#define per(i, a, b) for(int i = a; i > b; --i)
#define mt(a, b) memset(a, b, sizeof(a))
#define sz(a) (int)a.size()
#define fi first
#define se second
#define qc ios_base::sync_with_stdio(0);cin.tie(0)
#define eb emplace_back
#define all(a) a.begin(), a.end()
using ll = long long;
using db = double;
using pii = pair<int, int>;
using pdd = pair<db, db>;
using pll = pair<ll, ll>;
using vi = vector<int>;
const db eps = 1e-9;
const int N = 4e7 + 6;
vector<bool> is_prime(N, 1);
vector<int> primes;
void ES() {
is_prime[1] = 0;
for (int i = 2; i < N; ++i) {
if (is_prime[i]) primes.eb(i);
for (int j = 0; j < sz(primes) && i * primes[j] < N; ++j) {
is_prime[i * primes[j]] = 0;
if (i % primes[j] == 0) break;
}
}
}
int main() {
qc;
ES();
int m = sz(primes);
vector<ll> sum(m + 1);
rep(i, 1, m + 1) sum[i] = sum[i - 1] + primes[i - 1];
int t; cin >> t;
while(t--) {
int n; cin >> n;
int ans = 0;
for (int l = 1, r = 1; l <= m; ++l) {
if (primes[r - 1] > n) break;
while(r <= m && sum[r] - sum[l - 1] < n) ++r;
if (sum[r] - sum[l - 1] == n) ans++;
}
cout << ans << '\n';
}
return 0;
}