题干:

I like playing game with my friend, although sometimes looks pretty naive. Today I invent a new game called LianLianKan. The game is about playing on a number stack. 
Now we have a number stack, and we should link and pop the same element pairs from top to bottom. Each time, you can just link the top element with one same-value element. After pop them from stack, all left elements will fall down. Although the game seems to be interesting, it's really naive indeed. 


To prove I am a wisdom among my friend, I add an additional rule to the game: for each top element, it can just link with the same-value element whose distance is less than 6 with it. 
Before the game, I want to check whether I have a solution to pop all elements in the stack. 

Input

There are multiple test cases. 
The first line is an integer N indicating the number of elements in the stack initially. (1 <= N <= 1000) 
The next line contains N integer ai indicating the elements from bottom to top. (0 <= ai <= 2,000,000,000)

Output

For each test case, output “1” if I can pop all elements; otherwise output “0”.

Sample Input

2
1 1
3
1 1 1
2
1000000 1

Sample Output

1
0
0

题目大意:

给你有n个数的栈,连续的6个数中有两个一样的数可以消除,一次只能消除两个,且最头上那个必须被选择(也就是每次必须从头上开始选),问最终这个栈的数能不能被消完。

解题报告:

   刚开始贪心最近的,发现不行,因为可能要消远的  因为可能别人需要用这个来减少距离。后来尝试贪心最远的,,都WA了,看来只能dfs了、、

错误代码:

#include<bits/stdc++.h>
#define ll long long
using namespace std;
ll a[1005];
int main()
{
	int n;
	while(~scanf("%d",&n)) {
		vector<ll> vv;
		for(int i = 1; i<=n; i++) {
			scanf("%lld",&a[i]);
		}
		for(int i = n; i>=1; i--) {
			vv.push_back(a[i]);
		}
		if(n%2 == 1) {
			printf("0\n");continue;
		}
		vector<ll> :: iterator it;
		int flag = 0;
		while(1) {
			it = vv.begin();
			flag = 0;
			for(int i = 1; i<=5; i++) {
				if( ( it+i ) == vv.end()) {
					flag=0;break;
				}
				if(*(it+i) == (*it)) {
					flag=1;vv.erase(it+i);vv.erase(it);break;
				}
			}
			if(flag == 0) break;
			if(vv.size() == 0) break;
		}
		if(vv.size()) printf("0\n");
		else printf("1\n");
	}
	
	return 0 ;
}

AC代码:(丑陋的搜索)

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<queue>
#include<map>
#include<vector>
#include<set>
#include<string>
#include<cmath>
#include<cstring>
#define ll long long
#define pb push_back
#define pm make_pair
using namespace std;
const int MAX = 2e5 + 5;
ll a[MAX];
bool vis[MAX];
int flag,n;
void dfs(int cur) {
	while(cur <= n && vis[cur]) cur++;
	if(cur > n) {//已经说明vis[n]=1了所以不用判断了 
		flag = 1;
		return ;
	}
	//if(cur == n) return;//因为已经判断奇偶了,所以这一步也不需要了
	if(flag) return;
	vis[cur]=1;
	int cnt = 0;
	int j=cur+1;
	for(; cnt<=5;) {
		if(j>=n+1) return;
		if(vis[j]) {
			j++;
			continue;
		}
		//if(cur+i>n) return;
		if(a[j] == a[cur]) {
			vis[j]=1;
			dfs(cur+1);
			vis[j]=0;
		}
		cnt++;
		j++;
		if(flag) return;
	}
	vis[cur]=0;
}
map<ll,int>mp;
int main() {
	while(~scanf("%d",&n)) {
		flag = 0;
		mp.clear();
		for(int i = n; i>=1; i--) {
			scanf("%lld",&a[i]);
			vis[i]=0;
			mp[a[i]]++;
		}
		if(n%2 == 1 ) {
			printf("0\n");
			continue;
		}
		map<ll,int>::iterator it;
		for(it=mp.begin(); it!=mp.end(); it++) {
			if((it->second)%2==1) {
				flag = 2;
				break;
			}
		}
		if(flag == 2) {
			puts("0");
			continue;
		}
		dfs(1);
		if(flag) puts("1");
		else puts("0");
	}

	return 0 ;
}

AC代码3:(把dfs中while那一部分给改了)

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<queue>
#include<map>
#include<vector>
#include<set>
#include<string>
#include<cmath>
#include<cstring>
#define ll long long
#define pb push_back
#define pm make_pair
using namespace std;
const int MAX = 2e5 + 5;
ll a[MAX];
bool vis[MAX];
int flag,n;
void dfs(int cur) {
	if(cur > n) {
		flag = 1;return;
	}
	if(vis[cur]) {
		dfs(cur+1);	return;
	}
	if(flag) return;
	vis[cur]=1;
	int cnt = 0;
	int j=cur+1;
	for(; cnt<=5;) {
		if(j>=n+1) return;
		if(vis[j]) {
			j++;
			continue;
		}
		//if(cur+i>n) return;
		if(a[j] == a[cur]) {
			vis[j]=1;
			dfs(cur+1);
			vis[j]=0;
		}
		cnt++;
		j++;
		if(flag) return;
	}
	vis[cur]=0;
}
map<ll,int>mp;
int main() {
	while(~scanf("%d",&n)) {
		flag = 0;
		mp.clear();
		for(int i = n; i>=1; i--) {
			scanf("%lld",&a[i]);
			vis[i]=0;
			mp[a[i]]++;
		}
		if(n%2 == 1 ) {
			printf("0\n");
			continue;
		}
		map<ll,int>::iterator it;
		for(it=mp.begin(); it!=mp.end(); it++) {
			if((it->second)%2==1) {
				flag = 2;
				break;
			}
		}
		if(flag == 2) {
			puts("0");
			continue;
		}
		dfs(1);
		if(flag) puts("1");
		else puts("0");
	}

	return 0 ;
}

去掉map:

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<queue>
#include<map>
#include<vector>
#include<set>
#include<string>
#include<cmath>
#include<cstring>
#define ll long long
#define pb push_back
#define pm make_pair
using namespace std;
const int MAX = 2e5 + 5;
ll a[MAX];
bool vis[MAX];
int flag,n;
ll fk;
void dfs(int cur) {
	if(cur > n) {
		flag = 1;
		return;
	}
	if(vis[cur]) {
		dfs(cur+1);
		return;
	}
	if(flag) return;
	vis[cur]=1;
	int cnt = 0;
	int j=cur+1;
	for(; cnt<=5;) {
		if(j>=n+1) return;
		if(vis[j]) {
			j++;
			continue;
		}
		//if(cur+i>n) return;
		if(a[j] == a[cur]) {
			vis[j]=1;
			dfs(cur+1);
			vis[j]=0;
		}
		cnt++;
		j++;
		if(flag) return;
	}
	vis[cur]=0;
}
map<ll,int>mp;
int main() {
	while(~scanf("%d",&n)) {
		flag = 0;
		mp.clear();
		for(int i = n; i>=1; i--) {
			scanf("%lld",&a[i]);
			vis[i]=0;
			fk ^= a[i];
		}
		if(n%2 == 1 || fk != 0 ) {
			printf("0\n");
			continue;
		}
		dfs(1);
		if(flag) puts("1");
		else puts("0");
	}

	return 0 ;
}

比较美观的版本:(AC代码)

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<queue>
#include<map>
#include<vector>
#include<set>
#include<string>
#include<cmath>
#include<cstring>
#define ll long long
#define pb push_back
#define pm make_pair
using namespace std;
const int MAX = 2e5 + 5;
ll a[MAX];
bool vis[MAX];
int flag,n;
void dfs(int cur) {
	if(cur > n) {
		flag = 1; return;
	}
	if(vis[cur]) {
		dfs(cur+1); return;
	}
	vis[cur]=1;
	int cnt = 0;
	int now=cur+1;
	for(; cnt<=5;) {
		if(now>n) return;
		if(vis[now]) {
			now++;
			continue;
		}
		if(a[now] == a[cur]) {
			vis[now]=1;
			dfs(cur+1);
			vis[now]=0;
		}
		cnt++; now++;
		if(flag) return;
	}
	vis[cur]=0;
}
int main() {
	while(~scanf("%d",&n)) {
		flag = 0;
		for(int i = n; i>=1; i--) {
			scanf("%lld",&a[i]);
			vis[i]=0;
		}
		if(n%2 == 1 ) {
			printf("0\n");
			continue;
		}
		dfs(1);
		if(flag) puts("1");
		else puts("0");
	}

	return 0 ;
}

总结:

  刚开始一直dfs的是TLE或者是WA,,仔细原因就不深究了(太麻烦了),但是代码确实有一个地方写的有问题,首先刚开始dfs是这么实现的。。。

void dfs(int cur) {
	while(cur <= n && vis[cur]) cur++;
	if(cur > n && vis[n]) {
		flag = 1;
		return ;
	}
	if(cur > n) return;
	if(vis[cur]) {
		dfs(cur+1);
		return;
	}
	if(flag) return;
	vis[cur]=1;
	for(int i = 1; i<=5; i++) {
		if(vis[cur+i]) continue;
		if(a[cur+i] == a[cur]) {
			vis[cur+i]=1;
			dfs(cur+1);
			vis[cur+i]=0;
		}
		if(flag) return;
	}
	vis[cur]=0;
}

这就显然有问题了,,(不保证是原始版本了反正我随便挑了个WA的代码就放上来了),主要就是在于for(int i = 1; i<=5; i++)这里就不对,,因为没有考虑到中间有的数字可能已经被使用过了、题目中说的连续5个数字,,不是真正的物理连续,而是消除之后剩下的数字的连续的五个,所以不能这么写代码、并且还有小错误不断:经常把a[cur]写成a[i]了。。

还有一个地方,主函数中判断每个数出现次数是否是偶数次,经检验,这个剪枝就算不加,也不会TLE。。。

 

方法2:(状压dp)

看了别人的代码发现还有一种神奇的状压dp方法。

首先讨论一点最远能消除的地方,比如点的位置是x,如若想要消除x+1位置处的值,那么至少也得在x-4处开始消除,所以x后面最多能有4个被消除,也就是最多能下落4个位置,能够消除的最远距离是x+9,不会超过10个状态。

我们用dp[i][j]代表到第i个元素,且包含他和后面的十个元素状态为j时,这个是否合法。其中状态j:如果某一位为1,代表已经消除,某一位为0,代表没有消除。

那个t的作用是:判断状态的能否达到的时候要注意判断中间有多少个已经被消除的。

//状压dp
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<math.h>
using namespace std;

const int MAXN = 1<<10;
const int bit = 9;

int data[MAXN];
bool dp[MAXN][MAXN];

int main()
{
    int i, j, k, N;

    while(scanf("%d", &N) != EOF)
    {
        memset(data, -1, sizeof(data));
        memset(dp, 0, sizeof(dp));

        for(i=N; i>0; i--)
        {
            scanf("%d", &data[i]);
        }

        dp[0][0] = true;

        for(i=1; i<=N; i++)
        for(j=0; j<MAXN; j++)
        {
            if(dp[i-1][j] == true)
            {///这种状态存在
                if(j & 1)
                {///本位已经被消除
                    dp[i][j>>1] = true;
                }
                else
                {
                    int t = 0;///纪录已经被消除的,状态1表示被消除,0表示没有

                    for(k=1; k<=bit; k++)
                    {
                        if(!(j&(1<<k)) && k-t <=5 &&data[i] == data[i+k])
                        {///可以消除,两者之间的距离应该不超过6
                            dp[i][(j>>1)|(1<<(k-1))] = true;
                        }
                        else if(j & (1<<k))
                            t++;
                    }
                }
            }
        }

        if(dp[N][0] == true)
            printf("1\n");
        else
            printf("0\n");
    }

    return 0;
}

再贴两个记忆化dp的博客:链接  和  链接