slove  3/11

rank  346

补题   7/11

--------------------------------------------------------

https://ac.nowcoder.com/acm/contest/884#question

A、meeting

求树的直径,打个标记记录合法的点

#include <bits/stdc++.h>
#define Pair pair<int,int>
#define ll long long
using namespace std;
const int MAXN = 1e5 + 5;
struct edge
{
	int to;
	int w;
	int nex;
}e[MAXN * 2];
int head[MAXN], tot;
bool vis[MAXN], in[MAXN];
void add(int in, int to)
{
	e[tot] = edge{ to,1,head[in] };
	head[in] = tot++;
}
void dfs(int u, int fa)
{
	if (in[u] == true)
		vis[u] = true;
	for (int i = head[u]; i + 1; i = e[i].nex)
	{
		int v = e[i].to;
		if (v != fa)
		{
			dfs(v, u);
			if (vis[v] == true)
				vis[u] = true;
		}
	}
}
void init()
{
	memset(head, -1, sizeof(head));
	tot = 1;
}
int dp[2][MAXN];
int ans = 0;
void dps(int u, int father)
{
	for (int i = head[u]; i + 1; i = e[i].nex)
	{
		int v = e[i].to;
		if (vis[v] == false || v == father) 
			continue;
		dps(v, u);
		if (dp[0][u] < dp[0][v] + e[i].w)
		{
			dp[1][u] = dp[0][u];
			dp[0][u] = dp[0][v] + e[i].w;
		}
		else if (dp[1][u] < dp[0][v] + e[i].w)
			dp[1][u] = dp[0][v] + e[i].w;
		ans = max(ans, dp[0][u] + dp[1][u]);
	}
}
Pair input[MAXN];
int main()
{
	int a, b, n, k;
	scanf("%d%d", &n, &k);
	init();
	for (int i = 1; i < n; i++)
	{
		scanf("%d%d", &a, &b);
		input[i] = Pair{ a,b };
		add(a, b);
		add(b, a);
	}
	int s = 0;
	for (int i = 1; i <= k; i++)
	{
		scanf("%d", &a);
		if (i == 1)
			s = i;
		in[a] = true;
	}
	dfs(s, 0);
	dps(s, 0);
	printf("%d\n", (ans + 1) / 2);
}

B、xor

n 组数字,m个询问,每个询问三个数字 l r x,询问第 l 组数字到第 r 组数字中是否存在某一组,是否可以取出一些数字异或等于x。

线段树上维护线性基,线段树上每一个结点表示一个区间的所有数字构成的一个线性基,然后线性基向上合并,最后查询一下能不能插入数字 x ,如果可以的话,就表示可以异或出 x,否则不行。

Code:

#include <bits/stdc++.h>
#define lson left,mid,k<<1
#define rson mid+1,right,k<<1|1
#define imid int mid=(left+right)/2;
#define sc scanf
#define pr printf
#define ll long long
using namespace std;
struct LB
{
	static const int wei = 32;
	ll b[wei + 1], cnt;//cnt是个数
	LB()
	{
		cnt = 0;
		memset(b, 0, sizeof(b));
	}
	bool insert(ll x, int id)//插入
	{
		for (int i = wei; i >= 0; i--)
		{
			if (x & (1LL << i))
			{
				if (!b[i])
				{
					b[i] = x;
					cnt++;
					return true;
				}
				x ^= b[i];
			}
		}
		return false;
	}
	bool check(ll x)//判是否可以插入,实际上不插入
	{
		for (int i = wei; i >= 0; i--)
		{
			if (x & (1LL << i))
			{
				if (!b[i])
					return true;
				x ^= b[i];
			}
		}
		return false;
	}
	LB operator +(const LB o) const
	{
		LB ans, c = o, d = o;
		for (int i = 0; i <= wei; i++)
		{
			ll x = b[i];
			if (!x)
				continue;
			int j = i; ll T = 0;
			for (; j >= 0; --j)
			{
				if ((x >> j) & 1)
				{
					if (c.b[j])
					{
						x ^= c.b[j];
						T ^= d.b[j];
					}
					else
						break;
				}
			}
			if (!x)
				ans.b[i] = T;
			else
			{
				c.b[j] = x;
				d.b[j] = T;
			}
		}
		return ans;
	}
}que[50005 * 4];
int n, m, ql, qr;
ll val;
void build(int left = 1, int right = n, int k = 1)
{
	if (left == right)
	{
		int nn;
		ll a;
		scanf("%d", &nn);
		while (nn--)
		{
			scanf("%lld", &a);
			que[k].insert(a, 1);
		}
		return;
	}
	imid;
	build(lson);
	build(rson);
	que[k] = que[k << 1] + que[k << 1 | 1];
}
bool query(int left = 1, int right = n, int k = 1)
{
	if (qr < left || right < ql)
		return true;
	if (ql <= left && right <= qr)
		return !que[k].check(val);
	imid;
	return query(lson) & query(rson);
}
int main()
{
	scanf("%d%d", &n, &m);
	build();
	while (m--)
	{
		scanf("%d%d%lld", &ql, &qr, &val);
		puts(query() ? "YES" : "NO");
	}
}

C、sequence

单调栈维护以  这个数字作为最小值,线段树维护  的前缀和。

假设当前  可以取的左右的端点是l,r,然后对应于 b 里面可以取的一段就是的左端点就是 ,右端点就是,左端点 ,然后线段树求出区间最大和最小值。

#include <bits/stdc++.h>
#define lson left,mid,k<<1
#define rson mid+1,right,k<<1|1
#define imid int mid=(left+right)/2;
#define ll long long
using namespace std;
struct node
{
	int l;
	int r;
	ll minn;
	ll maxn;
}que[3000005 * 4];
ll a[3000005], b[3000005];
int n, m, ql, qr;
void up(int k)
{
	que[k].maxn = max(que[k << 1].maxn, que[k << 1 | 1].maxn);
	que[k].minn = min(que[k << 1].minn, que[k << 1 | 1].minn);
}
void build(int left = 1, int right = n, int k = 1)
{
	que[k].l = left;
	que[k].r = right;
	if (left == right)
	{
		que[k].maxn = b[left];
		que[k].minn = b[left];
		return;
	}
	imid;
	build(lson);
	build(rson);
	up(k);
}
ll querymin(int left = 1, int right = n, int k = 1)
{
	if (qr < left || right < ql)
		return 1e18;
	if (ql <= left && right <= qr)
		return que[k].minn;
	imid;
	return min(querymin(lson), querymin(rson));
}
ll querymax(int left = 1, int right = n, int k = 1)
{
	if (qr < left || right < ql)
		return -1e18;
	if (ql <= left && right <= qr)
		return que[k].maxn;
	imid;
	return max(querymax(lson), querymax(rson));
}
int l[3000005], r[3000005];
stack<int>st;
int main()
{
	scanf("%d", &n);
	for (int i = 1; i <= n; i++)
		scanf("%lld", &a[i]);
	for (int i = 1; i <= n; i++)
	{
		scanf("%lld", &b[i]);
		b[i] += b[i - 1];
	}
	build();
	a[0] = -100000000000000000;
	a[n + 1] = -99999999999999999;
	st.push(0);
	for (int i = 1; i <= n + 1; i++)
	{
		while (a[st.top()] > a[i])
		{
			r[st.top()] = i;
			st.pop();
		}
		l[i] = st.top();
		st.push(i);
	}
	ll ans = -10000000000000000;
	for (int i = 1; i <= n; i++)
	{
		if (a[i] >= 0)//max
		{
			ql = l[i], qr = i - 1;
			ll ans1 = querymin();
			if (qr == 0)
				ans1 = 0;
			ql = i, qr = r[i] - 1;
			ll ans2 = querymax();
			if (qr == 0)
				ans2 = 0;
			ans = max(ans, a[i] * (ans2 - ans1));
		}
		else if (a[i] < 0)
		{
			ql = l[i], qr = i - 1;
			ll ans1 = querymax();
			if (qr == 0)
				ans1 = 0;
			ql = i, qr = r[i] - 1;
			ll ans2 = querymin();
			if (qr == 0)
				ans2 = 0;
			ans = max(ans, a[i] * (ans2 - ans1));
		}
	}
	printf("%lld\n", ans);
}

D、triples I

题意:给你一个数字,把他分成多个可以被3整除的数字 或运算 的结果。

思路:首先,题目保证数据合法,那个一个数字至多需要两个数字来或。对于二进制的每一位 1 2 4 8 等来说 %3的结果是 1 2 1 2 ,所以我们可以分别记录%3=1,=2的个数,然后讨论一下。

#include <bits/stdc++.h>
#define ll long long
using namespace std;
int main()
{
	int T;
	scanf("%d", &T);
	while (T--)
	{
		vector<int>one, two;
		ll n;
		int sum = 0;
		scanf("%lld", &n);
		for (int i = 0; i <= 62; i++)
		{
			if (n & (1LL << i))
			{
				if (i & 1)
				{
					two.push_back(i);
					sum += 2;
				}
				else
				{
					one.push_back(i);
					sum += 1;
				}
			}
		}
		int sz1 = one.size();
		int sz2 = two.size();
		ll ans1 = 0, ans2 = 0;
		if (sum % 3 == 0)
			printf("1 %lld\n", n);
		else if (sum % 3 == 1)
		{
			if (sz1 == 0)
			{
				for (int i = 0; i < 3; i++)
					ans1 += (1LL << two[i]);
				for (int i = 2; i < sz2; i++)
					ans2 += (1LL << two[i]);
			}
			else if (sz1 == 1)
			{
				ans1 += (1LL << one[0]);
				ans1 += (1LL << two[0]);
				for (int i = 0; i < sz2; i++)
					ans2 += (1LL << two[i]);
			}
			else if (sz1 == 2)
			{
				ans1 += (1LL << one[0]);
				ans2 += (1LL << one[1]);
				for (int i = 0; i < sz2; i++)
				{
					ans1 += (1LL << two[i]);
					ans2 += (1LL << two[i]);
				}
			}
			else
			{
				//sz1>=3
				for (int i = 0; i < 3; i++)
					ans1 += (1LL << one[i]);
				for (int i = 1; i < sz1; i++)
					ans2 += (1LL << one[i]);
				for (int i = 0; i < sz2; i++)
					ans2 += (1LL << two[i]);
			}
			printf("2 %lld %lld\n", ans1, ans2);
		}
		else if (sum % 3 == 2)
		{
			if (sz1 == 0)
			{
				for (int i = 0; i < 3; i++)
					ans1 += (1LL << two[i]);
				for (int i = 1; i < sz2; i++)
					ans2 += (1LL << two[i]);
			}
			else if (sz1 == 1)
			{
				ans1 += (1LL << one[0]);
				ans2 += (1LL << one[0]);
				ans1 += (1LL << two[0]);
				ans2 += (1LL << two[1]);
				for (int i = 2; i < sz2; i++)
					ans2 += (1LL << two[i]);
			}
			else if (sz1 == 2)
			{
				for (int i = 0; i < 2; i++)
					ans1 += (1LL << one[i]);
				for (int i = 0; i < 2; i++)
					ans1 += (1LL << two[i]);
				for (int i = 0; i < sz2; i++)
					ans2 += (1LL << two[i]);
			}
			else
			{
				//sz1>=3;
				for (int i = 0; i < 3; i++)
					ans1 += (1LL << one[i]);
				for (int i = 2; i < sz1; i++)
					ans2 += (1LL << one[i]);
				for (int i = 0; i < sz2; i++)
					ans2 += (1LL << two[i]);
			}
			printf("2 %lld %lld\n", ans1, ans2);
		}
	}
}

I、string

后缀自动机

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int N = 2e6 + 10;
const int maxc = 26;
char str[N];
struct Suffix_Automaton {
    int len[N * 2], //最长子串的长度(该节点字串数量=len[x]-len[link[x]])
        link[N * 2],   //后缀链接(最短串前部减少一个字符所到达的状态)
        cnt[N * 2],    //被后缀连接的数
        nex[N * 2][maxc],  //状态转移(尾部加一个字符的下一个状态)(图)
        idx, //节点编号
        last;    //最后节点
    ll epos[N * 2]; // enpos数(该状态子串出现数量)
    char str[N];
    ll a[N];        //长度为i的子串出现最大次数
    void newnode(int l) {
        len[idx] = l;
        memset(nex[idx], 0, sizeof(nex[idx]));
    }
    void init() {    //初始化
        last = idx = 1; //1表示root起始点 空集
        link[1] = len[1] = 0;
        newnode(0);
    }
    //SAM建图
    void insert(int c) {     //插入字符,为字符ascll码值
        int x = ++idx; //创建一个新节点x;
        newnode(len[last] + 1); //  长度等于最后一个节点+1
        epos[x] = 1;  //接受节点子串除后缀连接还需加一
        int p;  //第一个有C转移的节点;
        for (p = last; p && !nex[p][c]; p = link[p])
            nex[p][c] = x;//沿着后缀连接 将所有没有字符c转移的节点直接指向新节点
        if (!p)
            link[x] = 1, cnt[1]++;  //全部都没有c的转移 直接将新节点后缀连接到起点
        else {
            int q = nex[p][c];    //p通过c转移到的节点
            if (len[p] + 1 == len[q])    //pq是连续的
                link[x] = q, cnt[q]++; //将新节点后缀连接指向q即可,q节点的被后缀连接数+1
            else {
                int nq = ++idx;   //不连续 需要复制一份q节点
                len[nq] = len[p] + 1;   //令nq与p连续 
                link[nq] = link[q];   //因后面link[q]改变此处 不加cnt
                memcpy(nex[nq], nex[q], sizeof(nex[q]));  //复制q的信息给nq
                for (; p && nex[p][c] == q; p = link[p])
                    nex[p][c] = nq;    //沿着后缀连接 将所有通过c转移为q的改为nq
                link[q] = link[x] = nq; //将x和q后缀连接改为nq
                cnt[nq] += 2; //  nq增加两个后缀连接
            }
        }
        last = x;  //更新最后处理的节点
    }
    ll GetSubNum() {    //求不相同字串数量
        ll ans = 0;
        for (int i = 2; i <= idx; i++)
            ans += (ll)len[i] - (ll)len[link[i]];    //一状态子串数量等于len[i]-len[link[i]]
        return ans;
    }
}sam;
struct pam {
    int nex[N][26], fail[N];
    ll cnt[N];
    int num[N], len[N], s[N], q[N << 1]; /*s用来存放已经插入的字符*/
    char str[N]; /*cnt 以i结尾的回文串出现次数 num 以i结尾的回文串种类*/
    int last, idx, length;
    ll ans[N];
    int id[N], r[N << 1];
    void newnode(int l)
    {
        len[idx] = l;
        memset(nex[idx], 0, sizeof(nex[idx]));
    }
    void init()
    {
        idx = 1, last = 0;
        len[0] = 0, len[1] = -1;
        cnt[1] = cnt[0] = 0;
        num[0] = num[1] = 0;
        memset(nex[0], 0, sizeof(nex[0]));
        memset(nex[1], 0, sizeof(nex[1]));
        length = 0;
        s[length] = -1;
        fail[0] = 1;
    }
    int get_fail(int x)
    {
        while (s[length - len[x] - 1] != s[length])
            x = fail[x];
        return x;
    }
    void insert_pam(int c)
    {
        s[++length] = c;
        int p = get_fail(last);
        if (!nex[p][c])
        {
            ++idx;
            id[idx] = length;
            newnode(len[p] + 2);
            fail[idx] = nex[get_fail(fail[p])][c];
            nex[p][c] = idx;
            num[idx] = num[fail[idx]] + 1;
        }
        last = nex[p][c];
        cnt[last]++;
    }
    void count()
    {
        for (int i = idx; i >= 2; i--)
            cnt[fail[i]] += cnt[i];
    }
}pam;
int main()
{
    scanf("%s", str);
    int  n = strlen(str);
    sam.init();
    for (int i = 0; i < n; i++)
        sam.insert(str[i] - 'a');
    sam.last = 1;
    for (int i = n - 1; i >= 0; i--)
        sam.insert(str[i] - 'a');
    pam.init();
    for (int i = 0; i < n; i++)
        pam.insert_pam(str[i] - 'a');
    printf("%lld", (0ll+ (ll)sam.GetSubNum() + (ll)pam.idx - 1) / 2);
}

J、free

分层图最短路

#include <bits/stdc++.h>
#define Pair pair<ll, int>
#define ll long long
using namespace std;
const int MAXN = 1005;
const ll inf = 1e18 + 7;
struct edge
{
	int to;
	ll w;
	int nex;
}e[MAXN * 2];
int head[MAXN], tot;
void add(int in, int to, ll w)
{
	e[tot] = edge{ to,w,head[in] };
	head[in] = tot++;
}
struct node
{
	ll w;
	int u;
	int cnt;
	bool operator < (const node o) const {
		return w > o.w;
	}
};
ll dis[1005][1005];
bool vis[1005][1005];
void dij(int s)
{
	priority_queue<node>q;
	for (int i = 0; i < 1005; i++)
		for (int j = 0; j < 1005; j++)
		{
			dis[i][j] = inf;
			vis[i][j] = false;
		}
	dis[0][s] = 0;
	q.push(node{ 0,s,0 });
	while (!q.empty())
	{
		node t = q.top();
		int u = t.u;
		int k = t.cnt;
		q.pop();
		if (vis[k][u])
			continue;
		vis[k][u] = true;
		for (int i = head[u]; i + 1; i = e[i].nex)
		{
			int v = e[i].to;
			if (dis[k][v] > dis[k][u] + e[i].w)
			{
				dis[k][v] = dis[k][u] + e[i].w;
				q.push(node{ dis[k][v],v,k });
			}
			if (dis[k + 1][v] > dis[k][u] && k < 1001)
			{
				dis[k + 1][v] = dis[k][u];
				q.push(node{ dis[k + 1][v],v,k + 1 });
			}
		}
	}
}
void init()
{
	memset(head, -1, sizeof(head));
	tot = 1;
}
int main()
{
	int n, m, s, t, k;
	scanf("%d%d%d%d%d", &n, &m, &s, &t, &k);
	init();
	while (m--)
	{
		int a, b;
		ll c;
		scanf("%d%d%lld", &a, &b, &c);
		add(a, b, c);
		add(b, a, c);
	}
	dij(s);
	ll ans = inf;
	for (int i = 0; i <= k; i++)
		ans = min(ans, dis[i][t]);
	printf("%lld\n", ans);
}

K、number

找出一个串中所有能整除300的子串。

1、首先找到所有0的块,并且将这个块中0的个数标记在第一个出现的0上面。

2、然后每次遍历累计一个前缀和前缀%3 的余数的个数,然后每次遇到一个0的块,能产生的贡献就是 0的个数减一 乘 前缀出现的当前前缀%3的余数的个数

3、然后再统计0的个数,假设一块0 的个数是a,那么这一块可以取到0的个数就是 a*(a+1)/2

4、将余数为1 2的数量初始化为-1

#include <bits/stdc++.h>
#define ll long long
using namespace std;
char s[100005];
int sub[100005];
ll zero[100005];//当前下标0的个数
ll num[3];
int main()
{
	num[2] = num[1] = -1;
	scanf("%s", s + 1);
	ll ans = 0;
	int len = strlen(s + 1);
	s[0] = '1';
	int pre = 0;
	for (int i = 1; i <= len; i++)
	{
		if (s[i - 1] == '0' && s[i] == '0')
		{
			zero[pre]++;
		}
		else if (s[i - 1] != '0' && s[i] == '0')
		{
			pre = i;
			zero[pre]++;
		}
	}
	for (int i = 1; i <= len; i++)
	{
		sub[i] = (sub[i - 1] + s[i] - '0') % 3;
		if (zero[i])
		{
			int t = sub[i - 1];
			ll cnt = num[t];
			ans += cnt * (zero[i] - 1);
			ans += zero[i] * (zero[i] + 1) / 2;
		}
		num[sub[i]]++;
	}
	printf("%lld\n", ans);
}