D. Karen and Test
time limit per test
2 seconds
memory limit per test
512 megabytes
input
standard input
output
standard output

Karen has just arrived at school, and she has a math test today!

The test is about basic addition and subtraction. Unfortunately, the teachers were too busy writing tasks for Codeforces rounds, and had no time to make an actual test. So, they just put one question in the test that is worth all the points.

There are n integers written on a row. Karen must alternately add and subtract each pair of adjacent integers, and write down the sums or differences on the next row. She must repeat this process on the values on the next row, and so on, until only one integer remains. The first operation should be addition.

Note that, if she ended the previous row by adding the integers, she should start the next row by subtracting, and vice versa.

The teachers will simply look at the last integer, and then if it is correct, Karen gets a perfect score, otherwise, she gets a zero for the test.

Karen has studied well for this test, but she is scared that she might make a mistake somewhere and it will cause her final answer to be wrong. If the process is followed, what number can she expect to be written on the last row?

Since this number can be quite large, output only the non-negative remainder after dividing it by 109 + 7.

Input

The first line of input contains a single integer n (1 ≤ n ≤ 200000), the number of numbers written on the first row.

The next line contains n integers. Specifically, the i-th one among these is ai (1 ≤ ai ≤ 109), the i-th number on the first row.

Output

Output a single integer on a line by itself, the number on the final row after performing the process above.

Since this number can be quite large, print only the non-negative remainder after dividing it by 109 + 7.

Examples
input
Copy
5
3 6 9 12 15
output
Copy
36
input
Copy
4
3 7 5 2
output
Copy
1000000006
Note

In the first test case, the numbers written on the first row are 36912 and 15.

Karen performs the operations as follows:

The non-negative remainder after dividing the final number by 109 + 7 is still 36, so this is the correct output.

In the second test case, the numbers written on the first row are 375 and 2.

Karen performs the operations as follows:

The non-negative remainder after dividing the final number by 109 + 7 is 109 + 6, so this is the correct output.



题意:交叉的加减类似杨辉三角,问最后一个数是什么

思路:


观察图,对于n是偶数,倒数第二行的数有关系,12 34 56的系数一样,分别是C(n/2-1,(i-1)/2) 别问我是怎么知道的,逃)。最后一个加减和n%4的值有关。

数比较大,用逆元求组合数

// 网上看到很多人写奇偶项满足二项式定理,因此可以求coe。。 不是很明白这个解释

#include<bits/stdc++.h>
#define PI acos(-1.0)
using namespace std;
typedef long long ll;

const int N=2e5+5;
const int MOD=1e9+7;
const int INF=0x3f3f3f3f;

ll a[N];
int F[N], Finv[N], inv[N];//F是阶乘,Finv是逆元的阶乘
void init(){
    inv[1] = 1;
    for(int i = 2; i < N; i ++){
        inv[i] = (MOD - MOD / i) * 1ll * inv[MOD % i] % MOD;
    }
    F[0] = Finv[0] = 1;
    for(int i = 1; i < N; i ++){
        F[i] = F[i-1] * 1ll * i % MOD;
        Finv[i] = Finv[i-1] * 1ll * inv[i] % MOD;
    }
}
int comb(int n, int m){//comb(n, m)就是C(n, m)
    if(m < 0 || m > n) return 0;
    return F[n] * 1ll * Finv[n - m] % MOD * Finv[m] % MOD;
}

int main(void){
    init();
    int n;
    cin >>n;
    for(int i=1;i<=n;++i)   scanf("%lld",&a[i]);
    if(n==1){
        cout <<a[1]%MOD<<endl;
        return 0;
    }
    if(n==2){
        cout << (a[1]+a[2])%MOD<<endl;
        return 0;
    }
    if(n&1){
        int flag=1;
        for(int i=1;i<=n-1;i++){
            a[i]=a[i]+flag*a[i+1];
            flag=-flag;
        }
        --n;
    }
//    for(auto t:a)   cout <<t<<" ";
    int flag;
    if(n%4==0)  flag=-1;
    else    flag=1;
    ll sum=0;
    for(int i=1;i<=n;i+=2){
        int coe=comb(n/2-1,(i-1)/2);
        sum+=  (a[i]+flag*a[i+1]) % MOD *coe %MOD;
        sum=((sum%MOD)+MOD)%MOD;
    }
    cout <<sum <<endl;

    return 0;
}