题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6514

题意:给定n*m的矩阵,给定监视器可以搜索的范围,再给定小偷的路径。询问是否能够检测到小偷的全部路径。

题解:二维差分前缀和,因为数据范围很大,无法开二维的数组,因此使用一维数组模拟二维数组。

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 3e7 + 10;
int b[MAXN];		//一维数组模拟二维 
int main()
{
	int n, m, q, z;						//n 行 m 列 q 询问 z 修改 
	while (~scanf("%d%d", &n, &m))
	{
		memset(b, 0, sizeof(b));
		scanf("%d", &z);
		for (int i = 0; i < z; i++)		 	//二维差分 	m是修改操作次数 
		{
			int x1, y1, x2, y2, p = 1;
			scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
			b[x1*m + y1] += p; b[(x2 + 1)*m + (y2 + 1)] += p;
			b[(x2 + 1)*m + y1] -= p; b[x1*m + (y2 + 1)] -= p;
		}

		for (int i = 1; i <= n; i++)		//前缀和 求修改后的数组 
		{
			for (int j = 1; j <= m; j++)
				b[i*m + j] += b[i*m + (j - 1)] + b[(i - 1)*m + j] - b[(i - 1)*m + (j - 1)];
		}
		for (int i = 1; i <= n; i++)
		{
			for (int j = 1; j <= m; j++)
				b[i*m + j] = min(b[i*m + j], 1);	//大于1的部分设置为1,表示可以探测到 		
		}

		for (int i = 1; i <= n; i++)				//前缀和 求二维数组前缀和 
		{
			for (int j = 1; j <= m; j++)
				b[i*m + j] += b[i*m + (j - 1)] + b[(i - 1)*m + j] - b[(i - 1)*m + (j - 1)];
		}
		scanf("%d", &q);
		for (int i = 1; i <= q; i++)
		{
			int x1, y1, x2, y2;
			scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
			int ans = b[x2*m + y2] - b[(x1 - 1)*m + y2] - b[x2*m + (y1 - 1)] + b[(x1 - 1)*m + (y1 - 1)];
			if (ans == (x2 - x1 + 1)*(y2 - y1 + 1))	cout << "YES" << endl;
			else	cout << "NO" << endl;
		}
	}
	return 0;
}