The K−P factorization of a positive integer N is to write N as the sum of the P-th power of K positive integers. You are supposed to write a program to find the K−P factorization of N for any positive integers N, K and P.
Input Specification:
Each input file contains one test case which gives in a line the three positive integers N (≤), K (≤) and P (1,7]. The numbers in a line are separated by a space.
Output Specification:
For each case, if the solution exists, output in the format:
N = n[1]^P + ... n[K]^P
where n[i] (i = 1, ..., K) is the i-th factor. All the factors must be printed in non-increasing order.
Note: the solution may not be unique. For example, the 5-2 factorization of 169 has 9 solutions, such as 1, or 1, or more. You must output the one with the maximum sum of the factors. If there is a tie, the largest factor sequence must be chosen -- sequence { , } is said to be larger than { , } if there exists 1 such that ai=bi for i<L and aL>bL.
If there is no solution, simple output Impossible.
Sample Input 1:
169 5 2
Sample Output 1:
169 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2
Sample Input 2:
169 167 3
Sample Output 2:
Impossible
#include<iostream> #include<vector> using namespace std; int n, k, p,maxd; vector<int>fac, temp, ans; int pow(int x) { int ans=1; for (int i = 0; i < p; i++) ans *= x; return ans; } void init() { int temp=0; int i = 0; while (temp <= n) { fac.push_back(temp); temp = pow(++i); } } void DFS(int idex, int nowk, int sumd, int sum) { if (sum > n || nowk > k)return; if (sum == n && nowk == k) { if (sumd > maxd) { ans = temp; maxd = sumd; } return; } if (idex - 1 >= 0) { temp.push_back(idex); DFS(idex, nowk + 1, sumd + idex, sum + fac[idex]); temp.pop_back(); DFS(idex - 1, nowk , sumd , sum ); } } int main() { FILE* stream1; freopen_s(&stream1, "input.txt", "r", stdin); while (cin >> n >> k >> p) { maxd = -1; fac.clear(); ans.clear(); temp.clear(); init(); cout << endl; DFS(fac.size() - 1, 0, 0, 0); if (maxd ==-1) printf("Impossible\n"); else { printf("%d = %d^%d", n, ans[0], p); for (int i = 1; i < ans.size(); i++) { printf(" + %d^%d", ans[i], p); } printf("\n"); } } return 0; }