The K−P factorization of a positive integer N is to write N as the sum of the P-th power of K positive integers. You are supposed to write a program to find the K−P factorization of N for any positive integers N, K and P.
Input Specification:
Each input file contains one test case which gives in a line the three positive integers N (≤), K (≤) and P (1,7]. The numbers in a line are separated by a space.
Output Specification:
For each case, if the solution exists, output in the format:
N = n[1]^P + ... n[K]^P
where n[i] (i = 1, ..., K) is the i-th factor. All the factors must be printed in non-increasing order.
Note: the solution may not be unique. For example, the 5-2 factorization of 169 has 9 solutions, such as 1, or 1, or more. You must output the one with the maximum sum of the factors. If there is a tie, the largest factor sequence must be chosen -- sequence { , } is said to be larger than { , } if there exists 1 such that ai=bi for i<L and aL>bL.
If there is no solution, simple output Impossible.
Sample Input 1:
169 5 2
Sample Output 1:
169 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2
Sample Input 2:
169 167 3
Sample Output 2:
Impossible
#include<iostream>
#include<vector>
using namespace std;
int n, k, p,maxd;
vector<int>fac, temp, ans;
int pow(int x)
{
int ans=1;
for (int i = 0; i < p; i++)
ans *= x;
return ans;
}
void init()
{
int temp=0;
int i = 0;
while (temp <= n)
{
fac.push_back(temp);
temp = pow(++i);
}
}
void DFS(int idex, int nowk, int sumd, int sum)
{
if (sum > n || nowk > k)return;
if (sum == n && nowk == k)
{
if (sumd > maxd)
{
ans = temp;
maxd = sumd;
}
return;
}
if (idex - 1 >= 0)
{
temp.push_back(idex);
DFS(idex, nowk + 1, sumd + idex, sum + fac[idex]);
temp.pop_back();
DFS(idex - 1, nowk , sumd , sum );
}
}
int main()
{
FILE* stream1;
freopen_s(&stream1, "input.txt", "r", stdin);
while (cin >> n >> k >> p)
{
maxd = -1;
fac.clear();
ans.clear();
temp.clear();
init();
cout << endl;
DFS(fac.size() - 1, 0, 0, 0);
if (maxd ==-1)
printf("Impossible\n");
else
{
printf("%d = %d^%d", n, ans[0], p);
for (int i = 1; i < ans.size(); i++)
{
printf(" + %d^%d", ans[i], p);
}
printf("\n");
}
}
return 0;
} 
京公网安备 11010502036488号