选点
题目地址:
基本思路:
我们看到题目给出的条件,
要满足这个条件我们可以考虑构造序的访问顺序,
我们知道对于一棵子树来说根节点肯定是第一个访问的,
那么只要我们先访问右子树再访问左子树,用这样的顺序去构造序列,
那么生成的这个序列的就是我们的答案了。
参考代码:
#include <bits/stdc++.h> using namespace std; #define IO std::ios::sync_with_stdio(false); cin.tie(0) #define ll long long #define ull unsigned long long #define SZ(x) ((int)(x).size()) #define all(x) (x).begin(), (x).end() #define rep(i, l, r) for (int i = l; i <= r; i++) #define per(i, l, r) for (int i = l; i >= r; i--) #define mset(s, _) memset(s, _, sizeof(s)) #define pb push_back #define pii pair <int, int> #define mp(a, b) make_pair(a, b) #define debug(x) cerr << #x << " = " << x << '\n'; #define pll pair <ll, ll> #define fir first #define sec second #define INF (int)3e9 #define int ll inline int read() { int x = 0, neg = 1; char op = getchar(); while (!isdigit(op)) { if (op == '-') neg = -1; op = getchar(); } while (isdigit(op)) { x = 10 * x + op - '0'; op = getchar(); } return neg * x; } inline void print(int x) { if (x < 0) { putchar('-'); x = -x; } if (x >= 10) print(x / 10); putchar(x % 10 + '0'); } const int maxn = 1e5 + 10; int n,w[maxn],a[maxn]; vector<int> G[maxn]; vector<int> vec; signed main() { n = read(); rep(i, 1, n) w[i] = read(); for (int i = 1; i <= n; i++) { int l = read(), r = read(); if (r) G[i].push_back(r); if (l) G[i].push_back(l); } function<void(int)> dfs = [&dfs](int u) { vec.push_back(w[u]); for (auto &to : G[u]) dfs(to); }; dfs(1); vector<int> dp(SZ(vec), INF); for (int i = 0; i < SZ(vec); i++) { *lower_bound(all(dp), vec[i]) = vec[i]; } int ans = lower_bound(all(dp), INF) - dp.begin(); print(ans); return 0; }