链接:https://ac.nowcoder.com/acm/contest/4743/C
换元后三分,这题三分是利用三分确定极值存在的一个区间,然后在这个区间上再求解。
#include <bits/stdc++.h> using namespace std; #define IO ios::sync_with_stdio(false);cin.tie(0); cout.tie(0) #define all(__vv__) (__vv__).begin(), (__vv__).end() #define endl "\n" #define SZ(x) ((int)(x).size()) #define pb push_back #define pii pair<int, int> #define mset(__x__,__val__) memset(__x__, __val__, sizeof(__x__)) typedef long long ll; typedef unsigned long long ull; typedef long double ld; inline ll read() { ll s = 0, w = 1; char ch = getchar(); for (; !isdigit(ch); ch = getchar()) if (ch == '-') w = -1; for (; isdigit(ch); ch = getchar()) s = (s << 1) + (s << 3) + (ch ^ 48); return s * w; } inline void print(ll x, int op = 10) { if (!x) { putchar('0'); if (op) putchar(op); return; } char F[40]; ll tmp = x > 0 ? x : -x; if (x < 0)putchar('-'); int cnt = 0; while (tmp > 0) { F[cnt++] = tmp % 10 + '0'; tmp /= 10; } while (cnt > 0)putchar(F[--cnt]); if (op) putchar(op); } inline ll gcd(ll x, ll y) { return y ? gcd(y, x % y) : x; } ll qpow(ll a, ll b) { ll ans = 1; while (b) { if (b & 1) ans *= a; b >>= 1; a *= a; } return ans; } ll qpow(ll a, ll b, ll mod) { ll ans = 1; while (b) { if (b & 1)(ans *= a) %= mod; b >>= 1; (a *= a) %= mod; }return ans % mod; } const int dir[][2] = { {0,1},{1,0},{0,-1},{-1,0},{1,1},{1,-1},{-1,1},{-1,-1} }; const int MOD = 1e9+7; const int INF = 0x3f3f3f3f; const int N = 5e5+10; const double eps = 1e-11; int a[N], b[N], c[N]; int t, x, y; inline int cal(int m) { return m + min((x-2*m)/4, (y-3*m)); } int main() { t = read(); while(t--) { x = read(), y = read(); int l = 0, r = min(x/2, y/3); while(r-l >= 5) { int Lmid = l + (r-l)/3; int Rmid = r - (r-l)/3; if(cal(Lmid) < cal(Rmid)) l = Lmid; else r = Rmid; } int maxx = 0; for(int i = l; i <= r; i++){ maxx = max(maxx, cal(i)); } print(maxx); } }