解题报告:同朴素的 O ( n 2 ) O(n^2) O(n2)写法一样,也能够记录路径,要在松弛的阶段用一个数组保存前缀节点。关于堆优化写法的注意事项:

  • 更新的时候注意那个三角不等式的意思是:我当前的最短路为dist[u],它加上新节点的w能够比源点到它的原本距离,这个w不要写成u弹出的那个节点的w!

Code

#include <bits/stdc++.h>

using namespace std;
const int maxn = (int)1e3+5;
const int inf = 0x3f3f3f3f;

struct Node {
	int to;
	int w;
	Node(int to, int w) {
		this->to = to;
		this->w = w;
	}
	
	bool operator < (const Node& A) const {
		return w > A.w;
	}
};
int n,m,start,goal;
bool used[maxn]; //是否跟新过
int dist[maxn];
vector<Node> tab[maxn];
priority_queue<Node> pq;

void init() {
	for (int i = 1; i <= n; i++) {
		tab[i].clear();
	}
	int u,v,w;
	for (int i = 1; i <= m; i++) {
		scanf("%d%d%d", &u, &v, &w);
		tab[v].push_back(Node(u, w));
	}
}

void dijkstra() {
	memset(used, false, sizeof(used));
	fill(dist+1, dist+1+n, inf);
	while (!pq.empty()) {
		pq.pop();
	}
	
	dist[start] = 0;
	pq.push(Node(start, 0));
	while (!pq.empty()) {
		Node x = pq.top();
		pq.pop();
		int u = x.to;
		if (used[u]) continue;
		used[u] = true;
		for (int i = 0; i < tab[u].size(); i++) {
			int v = tab[u][i].to;
			int w = tab[u][i].w;
			if (!used[v] && dist[v] > dist[u] + w) {
				dist[v] = dist[u] + w;
				pq.push(Node(v, dist[v]));
			}
		}
	}
}

int main() {
	int w, ans, k;
	while (~scanf("%d%d%d", &n, &m, &start)) {
		init();
		dijkstra();
		scanf("%d", &w);
		ans = -1;
		for (int i = 0; i < w; i++) {
			scanf("%d", &k);
			if (ans == -1 || ans > dist[k]) ans = dist[k];
		}
		printf("%d\n", ans == inf ? -1 : ans);
	}
	return 0;
}