题意:
给你n个数字,q次查询,每次查询区间l,r之间可以组成三角形的最大周长是多少,没有就输出-1
题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=6601
题解:
直接求区间第1大和第2大和第3大,不行组成就往下递推,最差情况就是成斐波那契数列,最多推49次
AC_code:
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn = 100010;
const int maxm = maxn*30;
int q, n, m, tot;
int a[maxn], t[maxn];
int rt[maxn], lson[maxm], rson[maxm], c[maxm];
void init_hash() {
for(int i = 1; i <= n; i++) {
t[i] = a[i];
}
sort(t+1, t+1+n);
m = unique(t+1, t+1+n)-t-1;
}
int build(int l, int r) {
int root = tot++;
c[root] = 0;
if(l != r) {
int mid = (l+r)>>1;
lson[root] = build(l, mid);
rson[root] = build(mid+1, r);
}
return root;
}
int hashs(ll x) {
return lower_bound(t+1, t+1+m, x) - t;
}
int update(int root, int pos, int val) {
int newroot = tot++, tmp = newroot;
c[newroot] = c[root] + val;
int l = 1, r = m;
while(l < r) {
int mid = (l + r)>>1;
if(pos <= mid) {
lson[newroot] = tot++;
rson[newroot] = rson[root];
newroot = lson[newroot];
root = lson[root];
r = mid;
} else {
rson[newroot] = tot++;
lson[newroot] = lson[root];
newroot = rson[newroot];
root = rson[root];
l = mid + 1;
}
c[newroot] = c[root] + val;
}
return tmp;
}
int query(int left_root, int right_root, int k) {
int l = 1, r = m;
while(l < r) {
int mid = (l+r)>>1;
if(c[lson[left_root]] - c[lson[right_root]] >= k) {
r = mid;
left_root = lson[left_root];
right_root = lson[right_root];
} else {
l = mid + 1;
k -= c[lson[left_root]] - c[lson[right_root]];
left_root = rson[left_root];
right_root = rson[right_root];
}
}
return l;
}
ll num[55];
int main() {
while(~scanf("%d %d", &n, &q)) {
tot = 0;
for(int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
}
init_hash();
rt[n+1] = build(1, m);//建空树
for(int i = n; i; i--) {
int pos = hashs(a[i]);
rt[i] = update(rt[i+1], pos, 1);
}
while(q--) {
int l, r;
scanf("%d %d", &l, &r);
int len = (r - l + 1);
ll ans = -1;
while (len >= 3) {
ll x1 = t[query(rt[l], rt[r + 1], len)];
ll x2 = t[query(rt[l], rt[r + 1], len - 1)];
ll x3 = t[query(rt[l], rt[r + 1], len - 2)];
if (x1 < x2 + x3) {
ans = 1LL * x1 + 1LL * x2 + 1LL * x3;
break;
}
len--;
}
printf("%lld\n", ans);
}
return 0;
}