其实本质上来说这个问题算是一个几何问题了,但是还是和动态规划算法中的最优计算次序问题非常的雷同。

多边形本身是由封闭的首尾相连的封闭线段曲线组成。包围在多边形内部的所有点称为多边形的内部;多边形本身构成了一个多边形的边界;其余的就是属于多边形的外部了。一个简单的多边形和内部构成了闭凸集时,就称这个为一个凸多边形。

定义:多边形的三角剖分就是将多边形分隔成为互不相交的三角形的弦的集合T。

凸多边形最优三角剖分问题:给定凸多边形P={v0,v1,v2,v3,..,vn-1},以及定义在由多边形的边的弦组成的三角形上的权函数w。要求确定该凸多边形的三角剖分,使得该三角剖分所对应的权,即该三角剖分中诸三角形上权之和最小。