题意: 给出一个由m中字母组成的长度为n的串,给出m种字母添加和删除花费的代价,求让给出的串变成回文串的代价。
分析:我们知道添加最少的字母让其回文是经典的DP。可以转化为LCS来解,即枚举中间点,计算前后的最长公共子序列长度MAX,最后总长度减掉2倍MAX就可以了。那么这个题多了一个价值,我们不能这样做了,那么我们怎么做呢?
考虑这么一个区间DP。DP[i][j]代表区间i,j是回文的最小代价,那么转移很容易想到:
可以发现这个区间DP,实际上是二维的,它没有枚举断点的过程。
代码如下:
//
//Created by BLUEBUFF 2016/1/10
//Copyright (c) 2016 BLUEBUFF.All Rights Reserved
//
#pragma comment(linker,"/STACK:102400000,102400000")
//#include <ext/pb_ds/assoc_container.hpp>
//#include <ext/pb_ds/tree_policy.hpp>
//#include <ext/pb_ds/hash_policy.hpp>
#include <set>
#include <map>
#include <queue>
#include <stack>
#include <cmath>
#include <cstdio>
#include <time.h>
#include <cstdlib>
#include <cstring>
#include <complex>
#include <sstream> //isstringstream
#include <iostream>
#include <algorithm>
using namespace std;
//using namespace __gnu_pbds;
typedef long long LL;
typedef pair<int, LL> pp;
#define REP1(i, a, b) for(int i = a; i < b; i++)
#define REP2(i, a, b) for(int i = a; i <= b; i++)
#define REP3(i, a, b) for(int i = a; i >= b; i--)
#define CLR(a, b) memset(a, b, sizeof(a))
#define MP(x, y) make_pair(x,y)
template <class T1, class T2>inline void getmax(T1 &a, T2 b) { if (b>a)a = b; }
template <class T1, class T2>inline void getmin(T1 &a, T2 b) { if (b<a)a = b; }
const int maxn = 210;
const int maxm = 1e5+5;
const int maxs = 10;
const int maxp = 1e3 + 10;
const int INF = 1e9;
const int UNF = -1e9;
const int mod = 1e9 + 7;
const int rev = (mod + 1) >> 1; // FWT
//const double PI = acos(-1);
//head
int m, n;
char s[2010];
int dp[2010][2010];
map <char, int> mp;
int main()
{
while(scanf("%d%d", &m, &n) != EOF)
{
mp.clear();
scanf("%s", s + 1);
REP2(i, 1, m){
char op[3];
int x, y;
scanf("%s%d%d", op, &x, &y);
mp[op[0]] = min(x, y);
}
CLR(dp, 0);
for(int len = 1; len <= n; len++){
for(int i = 1; i + len - 1 <= n; i++){
int j = i + len - 1;
dp[i][j] = INF;
if(s[i] == s[j]){
dp[i][j] = dp[i + 1][j - 1];
}
else{
dp[i][j] = min(dp[i+1][j] + mp[s[i]], dp[i][j]);
dp[i][j] = min(dp[i][j-1] + mp[s[j]], dp[i][j]);
}
}
}
cout << dp[1][n] << endl;
}
return 0;
}