题目描述
众所周知,杨老师是一位十分勤奋的老师,他非常的热爱学习。

勤奋的他为自己罗列了一个学习清单,共有n个知识点,他可以有选择的进行学习。

每个知识点都会对应0个或1个或多个先修知识点(只有学会了先修知识点才能学习该知识点),同时每个知识点都有一个智慧值和一个智力消耗值。

杨老师希望在进行过激烈的学习之后,他的收获可以·量化为所有学过的题的智慧值的和与智力消耗值的和的差值。请问,这个值最大是多少?

输入描述:

第一行:一个整数n(n<=500)接下来n行,每行两个整数,代表第i个知识点的智慧值和智力消耗值接下来若干行,每行2个整数u, v,代表u是v的先修知识点。

输出描述:

一行,表示杨老师的收获的最大值

示例1

4
5 1
2 1
1 2
1 2
3 1
2 4
2 1

输出

4


地址:题目链接


我们先来一个最大权闭合子图的定义:
在一个图中,我们选取一些点构成集合,记为V,且集合中的出边(即集合中的点的向外连出的弧),所指向的终点(弧头)也在V中,则我们称V为闭合图。最大权闭合图即在所有闭合图中,集合中点的权值之和最大的V,我们称V为最大权闭合图

那么这道题,我们不难看出就是一道最大权闭合子图的题目。

对于此类题目,我们一般做法为:

①先记录整个图中,所有正点权值的和;
②建立对应流网络,求最大流,最大流在数值上等于最小割,故我们得到了流网络的s-t最小割;
③“所有正点权值的和”减去“s-t最小割”,即得最大权闭合子图的权值和。

但是这道题目应该是每个点的前驱都在闭合图里面,所以我们反向建边即可。


AC代码:

#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std;
const int N=500010;
const int inf=0x3f3f3f3f;
int n,u,v,res,s,t,h[N];
int head[N],nex[N],to[N],w[N],tot=1;
inline void ade(int a,int b,int c){
	to[++tot]=b; w[tot]=c; nex[tot]=head[a]; head[a]=tot;
}
inline void add(int a,int b,int c){
	ade(a,b,c);	ade(b,a,0);
}
int bfs(){
	memset(h,0,sizeof h);	h[s]=1;	queue<int> q;	q.push(s);
	while(q.size()){
		int u=q.front();	q.pop();
		for(int i=head[u];i;i=nex[i]){
			if(w[i]&&!h[to[i]]){
				h[to[i]]=h[u]+1;	q.push(to[i]);
			}
		}
	}
	return h[t];
}
int dfs(int x,int f){
	if(x==t)	return f;
	int fl=0;
	for(int i=head[x];i&&f;i=nex[i]){
		if(w[i]&&h[to[i]]==h[x]+1){
			int mi=dfs(to[i],min(w[i],f));
			w[i]-=mi;	w[i^1]+=mi;	fl+=mi;	f-=mi;
		}
	}
	if(!fl)	h[x]=-1;
	return fl;
}
int dinic(){
	int res=0;
	while(bfs())	res+=dfs(s,inf);
	return res;
}
int main(){
	cin>>n;	s=N-2;	t=N-1;	
	for(int i=1;i<=n;i++){
		cin>>u>>v;	if(u==v)	continue;
		if(u>v)	add(s,i,u-v),res+=u-v;
		else	add(i,t,v-u);
	}
	while(cin>>u>>v)	add(v,u,inf);
	cout<<res-dinic()<<endl;
	return 0;
}