二分
首先假设已经求解到的ans代表合理的最大幸福的,我们显然希望找到一个吃巧克力的方式让他比当前ans更大,否则只能更小。符合二分性质。
而且二分的check函数设计直接把吃过的sum每天减半如果不够了再吃一个新的巧克力,看最后会不会超过n即可
最后调用一次check求道合理的最大幸福度的安排方法。
#pragma GCC target("avx,sse2,sse3,sse4,popcnt") #pragma GCC optimize("O2,O3,Ofast,inline,unroll-all-loops,-ffast-math") #include <bits/stdc++.h> using namespace std; #define js ios::sync_with_stdio(false);cin.tie(0); cout.tie(0) #define all(vv) (vv).begin(), (vv).end() #define endl "\n" typedef long long ll; typedef unsigned long long ull; typedef long double ld; const ll MOD = 1e9 + 7; inline ll read() { ll s = 0, w = 1; char ch = getchar(); for (; !isdigit(ch); ch = getchar()) if (ch == '-') w = -1; for (; isdigit(ch); ch = getchar()) s = (s << 1) + (s << 3) + (ch ^ 48); return s * w; } inline void write(ll x) { if (!x) { putchar('0'); return; } char F[40]; ll tmp = x > 0 ? x : -x; if (x < 0)putchar('-'); int cnt = 0; while (tmp > 0) { F[cnt++] = tmp % 10 + '0'; tmp /= 10; } while (cnt > 0)putchar(F[--cnt]); } inline ll gcd(ll x, ll y) { return y ? gcd(y, x % y) : x; } ll qpow(ll a, ll b) { ll ans = 1; while (b) { if (b & 1) ans *= a; b >>= 1; a *= a; } return ans; } ll qpow(ll a, ll b, ll mod) { ll ans = 1; while (b) { if (b & 1)(ans *= a) %= mod; b >>= 1; (a *= a) %= mod; }return ans % mod; } inline int lowbit(int x) { return x & (-x); } const int N = 5e4 + 7; ll l, r, mid, ans; ll n, d, a[N], day[N]; bool check(ll x) { ll tot = 0, sum = 0; for (int i = 1; i <= d; i++) { sum = sum >> 1; while (sum < x) { sum += a[++tot]; if (tot > n) return false; if (x and x == ans) day[tot] = i; } } return true; } int main() { n = read(); d = read(); for (int i = 1; i <= n; i++) a[i] = read(), r += a[i]; while (l <= r) { mid = (l + r) >> 1; if (check(mid)) ans = mid, l = mid + 1; else r = mid - 1; } printf("%lld\n", ans); check(ans); for (int i = 1; i <= n; i++) { if (day[i]) printf("%lld\n", day[i]); else printf("%lld\n", d); } return 0; }