声明:       

       这篇文章的主要目的是通过建立一维傅里叶变换与图像傅里叶变换中相关概念的对应关系来帮助读者理解图像处理中的离散傅里叶变换,因此,理解图像中离散傅里叶变换的前提条件是读者需要了解一维傅里叶变换的基本知识,详情可参考:https://zhuanlan.zhihu.com/p/19763358


基本数学概念的对应关系:

       一维傅里叶变换的作用对象是信号,信号是一维连续的,其数学表现形式如图1所示,该图反应的是随着时间不断推移,信号强度的变换情况,可称为时域:

<figcaption> 图1 </figcaption>

       而图像处理中的傅里叶变换的作用对象是二维矩阵。二维矩阵的数学表现形式如下图所示,反应了随着位置的不断改变,灰度值大小的变化情况。我们在此将其称为“距离-灰度变化图”:

<figcaption> 图2 </figcaption>

       从正面看去,由x轴与灰度值轴构成的切面图如图3所示:

<figcaption> 图3 </figcaption>

       图3与图1的本质是类似的,都是一个自变量一个因变量。因此可以构成对应关系:时间<->距离、信号强度<->灰度值。

傅里叶变换结果的对应关系:

       一维傅里叶变换的原理可以通俗的理解为:将一个复杂无规律的信号拆分成多个简单有规律的子信号来表示(如果对泰勒展开有深刻的理解的话,可以将傅里叶变换理解为将任意一个函数分解为任意个多项式的组合)。如图4所示。

<figcaption> 图4 </figcaption>

       为了定量表示这个结果,我们用下图进行表达。其中,横轴为频率大小,纵轴为振幅(即信号的最高强度),该图可称为频谱

<figcaption> 图5 </figcaption>

       通过观察频谱,我们可以发现,频谱中的每个点在时域中都对应一个函数(这个特点很重要,说明了频谱和时域的对应关系是点与线)。

       因此,通过类比,可将图像处理中傅里叶变换理解为:将一个复杂无规律的图像拆分成多个简单有规律的子图像来表示(此处画图太麻烦,请读者自行发挥想象力对图4中的众多子信号,想象成不断起伏的平面)。

       那要如何定量表达众多分解后的子图像呢?

       我们先来看一下图像傅里叶变换后的表现形式,即图像的“频谱”。

       现在,我们就通过类比,来理解这上幅图中的各个方向的自变量到底对应信号频谱中的哪个变量。

       在信号的频谱中,频率的定义为:单位时间内完成周期性变化的次数。而在上文“基本数学概念的对应关系”中,我们已经将时间和距离对应起来了。那么此处只需要将频率定义中的“时间”换成“距离”即可。最终得到用于表达图像傅里叶变换结果的“频谱”中频率的定义:单位距离内完成周期性变化的次数。由于图像中表达距离的单位是像素大小,所以对这个定义进一步可理解为:N个像素内灰度值完成周期性变化的次数。因此我们就成功的将图像“频谱”和信号“频谱”中的自变量联立起来了。在信号频谱中的频率是x(横)轴,而在图像的频谱中频率是(xy轴构成的)平面。距离原点越远,则说明频率越大。因此,窗口边缘处即为高频区域,原点周边即为低频区域。

注意:上文提到了对于信号来说,频谱中的一个点对应子信号时域中的一条线。通过类比,我们可以得出结论:图像频谱中的一个点对应子图像的一整张距离-灰度变化图。(而图像傅里叶变换的数学公式也反应了这个特点)

       同样的,信号频谱中的y轴反应子信号,信号强度的变化范围,而图像频谱中的z轴反应子图像的灰度值的变化范围。频谱窗口中对应的点越亮,则说明该点对应频率的变化范围越大。

总结与举例:

       综上,可对图像频谱进行解读:

       距离原点越远=频率越高=原图中灰度值的变化越频繁。

       灰度值越大=幅值越大=原图中灰度值变化的范围越大。

       因此,低通滤波能保留图像的大致轮廓信息是因为,一张图像所记录到的主要信息(由于受到关照等必然因素的影响)在图像上灰度值的变化是缓慢的,因此主要信息集中在低频区域。而噪音等偶然因素是突然附加到图像上使得灰度值快速变化,而且密密麻麻,这导致N个像元内,灰度值的变化不仅频繁,而且变化的范围还很大。因此,噪音就位于图像频谱的高频区域,表现为高灰度值。