import pandas as pd # 读取数据集 df = pd.read_csv("nowcoder.csv") # 将date列转换为日期时间类型 df["date"] = pd.to_datetime(df["date"]) df['datetime']=df['date'].dt.date df = df[(df["date"].dt.year == 2021) & (df["date"].dt.month == 12)] df["newrank"] = df["datetime"] - pd.to_timedelta( df.groupby("user_id")["datetime"].rank(), unit="d" ) grouped_df = df.groupby(["user_id", "newrank"]).size().reset_index(name="question_id") grouped_df=grouped_df[grouped_df['question_id']>=3] # 按 user_id 分组,取每组中 count 列的最大值 max_count_per_user = grouped_df.groupby("user_id")["question_id"].max() print(max_count_per_user)