一.题目链接:
ZOJ-3998
二.题目大意:
给你 n 个数 a[1 ~ n].
现有 3 种 m 次操作:
① l r v 将 a[l ~ r] 的数都乘以 v
② l r v 将 a[l ~ r] 的数变为 a[l]^v....a[r]^v
③ l r 查询 a[l] ×......× a[r].
三.分析:
双懒惰标记的线段树.
详见代码吧...
四.代码实现:
#include <set>
#include <map>
#include <ctime>
#include <queue>
#include <cmath>
#include <stack>
#include <vector>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define eps 1e-6
#define pi acos(-1.0)
#define ll long long int
using namespace std;
const int M = (int)1e5;
const int mod = 1000000007;
struct node
{
int l;
int r;
ll w;
ll f1;
ll f2;
}tree[M * 4 + 5];
ll ans;
void build(int k, int l, int r)
{
tree[k].l = l;
tree[k].r = r;
tree[k].f1 = tree[k].f2 = 1;
if(l == r)
{
scanf("%lld", &tree[k].w);
return;
}
int mid = (l + r) / 2;
build(k * 2, l, mid);
build(k * 2 + 1, mid + 1, r);
tree[k].w = tree[k * 2].w * tree[k * 2 + 1].w % mod;
}
ll quick(ll a, ll b)
{
ll sum = 1;
while(b)
{
if(b & 1)
sum = sum * a % mod;
a = a * a % mod;
b >>= 1;
}
return sum % mod;
}
void push(int k)
{
tree[k * 2].f2 = tree[k * 2].f2 * tree[k].f2 % (mod - 1);
tree[k * 2 + 1].f2 = tree[k * 2 + 1].f2 * tree[k].f2 % (mod - 1);
tree[k * 2].f1 = quick(tree[k * 2].f1, tree[k].f2) * tree[k].f1 % mod;
tree[k * 2 + 1].f1 = quick(tree[k * 2 + 1].f1, tree[k].f2) * tree[k].f1 % mod;
tree[k * 2].w = quick(tree[k * 2].w, tree[k].f2) * quick(tree[k].f1, tree[k * 2].r - tree[k * 2].l + 1) % mod;
tree[k * 2 + 1].w = quick(tree[k * 2 + 1].w, tree[k].f2) * quick(tree[k].f1, tree[k * 2 + 1].r - tree[k * 2 + 1].l + 1) % mod;
tree[k].f1 = tree[k].f2 = 1;
}
void interver(int k, int l, int r, int a, int b, ll c, bool flag)
{
if(l >= a && r <= b)
{
if(!flag)
{
tree[k].f1 = tree[k].f1 * c % mod;
tree[k].w = tree[k].w * quick(c, tree[k].r - tree[k].l + 1ll) % mod;
return;
}
else
{
tree[k].w = quick(tree[k].w, c);
tree[k].f1 = quick(tree[k].f1, c);
tree[k].f2 = tree[k].f2 * c % (mod - 1);
return;
}
}
push(k);
int mid = (l + r) / 2;
if(a <= mid)
interver(k * 2, l, mid, a, b, c, flag);
if(mid < b)
interver(k * 2 + 1, mid + 1, r, a, b, c, flag);
tree[k].w = tree[k * 2].w * tree[k * 2 + 1].w % mod;
}
void query(int k, int l, int r, int a, int b)
{
if(l >= a && r <= b)
{
ans = ans * tree[k].w % mod;
return;
}
push(k);
int mid = (l + r) / 2;
if(a <= mid)
query(k * 2, l, mid, a, b);
if(mid < b)
query(k * 2 + 1, mid + 1, r, a, b);
tree[k].w = tree[k * 2].w * tree[k * 2 + 1].w % mod;
}
int main()
{
int T;
scanf("%d", &T);
while(T--)
{
int n, m;
scanf("%d %d", &n, &m);
build(1, 1, n);
while((m--) > 0)
{
int dir, l, r;
scanf("%d %d %d", &dir, &l, &r);
if(dir <= 2)
{
ll v;
scanf("%lld", &v);
interver(1, 1, n, l, r, v, dir - 1);
}
else
{
ans = 1;
query(1, 1, n, l, r);
printf("%lld\n", ans);
}
}
}
return 0;
}