题目意思
大水题,给出n个顶点的m条边的有向带权图。
求从1到n的方法数有多少条?是不是很震惊,边权不同控制发出时间即可同一时间到达,所以边权的信息没什么用。
解题思路
我写的dfs,回溯法先求道各个入点的路径数,累加就是这个出度点的答案。
使用记忆化搜索可以简化计算时间
#pragma GCC target("avx,sse2,sse3,sse4,popcnt") #pragma GCC optimize("O2,O3,Ofast,inline,unroll-all-loops,-ffast-math") #include <bits/stdc++.h> using namespace std; #define js ios::sync_with_stdio(false);cin.tie(0); cout.tie(0) #define all(__vv__) (__vv__).begin(), (__vv__).end() #define endl "\n" #define pai pair<int, int> #define mk(__x__,__y__) make_pair(__x__,__y__) typedef long long ll; typedef unsigned long long ull; typedef long double ld; const ll INF = 0x3f3f3f3f; inline ll read() { ll s = 0, w = 1; char ch = getchar(); for (; !isdigit(ch); ch = getchar()) if (ch == '-') w = -1; for (; isdigit(ch); ch = getchar()) s = (s << 1) + (s << 3) + (ch ^ 48); return s * w; } inline void print(ll x) { if (!x) { putchar('0'); return; } char F[40]; ll tmp = x > 0 ? x : -x; if (x < 0)putchar('-'); int cnt = 0; while (tmp > 0) { F[cnt++] = tmp % 10 + '0'; tmp /= 10; } while (cnt > 0)putchar(F[--cnt]); } inline ll gcd(ll x, ll y) { return y ? gcd(y, x % y) : x; } ll qpow(ll a, ll b) { ll ans = 1; while (b) { if (b & 1) ans *= a; b >>= 1; a *= a; } return ans; } ll qpow(ll a, ll b, ll mod) { ll ans = 1; while (b) { if (b & 1)(ans *= a) %= mod; b >>= 1; (a *= a) %= mod; }return ans % mod; } inline int lowbit(int x) { return x & (-x); } const int N = 1e5 + 7; const int MOD = 20010905; int head[N], n, m, tot; struct Node { int v, next; }edge[N << 1]; void add(int u, int v) { ++tot; edge[tot].v = v; edge[tot].next = head[u]; head[u] = tot; } int dp[N]; int dfs(int x) { if(dp[x]) return dp[x]; for (int i = head[x]; i; i = edge[i].next) (dp[x] += dfs(edge[i].v)) %= MOD; return dp[x]; } int main() { n = read(), m = read(); for (int i = 1; i <= m; ++i) { int u = read(), v = read(), w = read(); add(u, v); } dp[n] = 1; print(dfs(1)); return 0; }