NC17065 子序列
题目地址:
基本思路:
很明显这个题目是一个计数dp但是 这个式子值很大不好用来比较,但是我们化简一下两边取log就能得到这个式子,然后就是一个很朴素的计数dp了。设dp[i]表示以第i个元素结尾的所有子序列那么我们能得到转移方程 那么最后的答案就是
参考代码:
#pragma GCC optimize(2) #pragma GCC optimize(3) #include <bits/stdc++.h> using namespace std; #define IO std::ios::sync_with_stdio(false) #define int long long #define rep(i, l, r) for (int i = l; i <= r; i++) #define per(i, l, r) for (int i = l; i >= r; i--) #define mset(s, _) memset(s, _, sizeof(s)) #define pb push_back #define pii pair <int, int> #define mp(a, b) make_pair(a, b) #define INF 0x3f3f3f3f inline int read() { int x = 0, neg = 1; char op = getchar(); while (!isdigit(op)) { if (op == '-') neg = -1; op = getchar(); } while (isdigit(op)) { x = 10 * x + op - '0'; op = getchar(); } return neg * x; } inline void print(int x) { if (x < 0) { putchar('-'); x = -x; } if (x >= 10) print(x / 10); putchar(x % 10 + '0'); } const int maxn = 110; const int mod = 1e9 + 7; int n,a[maxn],dp[maxn]; bool change(int i,int j){ double k1 = (double)j * log(a[i]); double k2 = (double)i * log(a[j]); return k2 < k1; } signed main() { IO; cin >> n; rep(i,1,n) cin >> a[i]; int res = 0; for(int i = 1; i <= n ; i++){ dp[i] = 1; for(int j = 1 ; j < i ; j ++) if(change(i,j)){ dp[i] = (dp[i] + dp[j]) % mod; } res += dp[i]; res %= mod; } cout << res << '\n'; return 0; }