极限

等价无穷小

(1)指数函数: a x 1 <mtext>                        </mtext> a^x-1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \sim ax1                       x l n a xlna xlna
(2)幂函数: ( 1 + B x ) a 1 <mtext>              </mtext> (1+Bx)^a-1\ \ \ \ \ \ \ \ \ \ \ \ \sim (1+Bx)a1             a B x aBx aBx
(3)对数函数: l o g a ( 1 + x ) <mtext>                </mtext> log_a(1+x)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \sim loga(1+x)               x l n a \frac{x}{lna} lnax
(4)其他:
a x ( 1 + a x ) l n ( 1 + a x ) ( a x ) 2 ( 1 + a x ) 1 2 \frac{ax-(1+ax)ln(1+ax)}{(ax)^2(1+ax)} \sim -\frac{1}{2} (ax)2(1+ax)ax(1+ax)ln(1+ax)21
1 s i n x x 1 6 x 2 1-\frac{sinx}{x}\sim\frac{1}{6}x^2 1xsinx61x2

等价无穷大

(1) <munder> lim x </munder> ( 1 + 1 x ) x 2 = <munder> lim x </munder> e 1 2 e x \lim_{x\to\infty}(1+\frac{1}{x})^{x^2}=\lim_{x\to\infty}e^{-\frac{1}{2}}e^x xlim(1+x1)x2=xlime21ex
这里一开始推出矛盾
<munder> lim x </munder> ( 1 + 1 x ) x 2 = <munder> lim x </munder> e x 2 l n ( 1 + 1 x ) = e x 2 1 x = e x \lim_{x\to\infty}(1+\frac{1}{x})^{x^2}=\lim_{x\to\infty}e^{x^2ln(1+\frac{1}{x})}=e^{x^2\cdot\frac{1}{x}}=e^x xlim(1+x1)x2=xlimex2ln(1+x1)=ex2x1=ex
这个的原因应该是展开精度不够,上面的 l n ( 1 + 1 x ) 1 x ln(1+\frac{1}{x})\sim\frac{1}{x} ln(1+x1)x1相当于展开到第一项,精度不够,如果多写几项就能发现
<munder> lim x </munder> e x 2 l n ( 1 + 1 x ) = e x 2 ( 1 x 1 2 x 2 + O ( 1 x 2 ) ) = e x e 1 2 e O ( 1 x 2 ) ) = e x e 1 2 1 \lim_{x\to\infty}e^{x^2ln(1+\frac{1}{x})}=e^{x^2(\frac{1}{x}-\frac{1}{2x^2}+O(\frac{1}{x^2}))}=e^x\cdot e^{-\frac{1}{2}}\cdot e^{O(\frac{1}{x^2}))}=e^x\cdot e^{-\frac{1}{2}}\cdot 1 xlimex2ln(1+x1)=ex2(x12x21+O(x21))=exe21eO(x21))=exe211
这样就对了
(2)斯特林近似
<munder> lim n </munder> n ! = <munder> lim n </munder> 2 π n ( n e ) n \lim_{n\to\infty}n!=\lim_{n\to\infty}\sqrt{2\pi n}(\frac{n}{e})^n nlimn!=nlim2πn (en)n
一般看到阶乘的求极限贼好用
顺便记一下阶乘的积分公式
n ! = 0 + x n e x d x n!=\int_{0}^{+\infty}x^ne^{-x}dx n!=0+xnexdx

常用泰勒展开

①: t a n x tanx tanx

t a n x = x + 1 3 x 3 + 2 15 x 5 + 17 315 x 7 + . . . tanx=x+\frac{1}{3}x^3+\frac{2}{15}x^5+\frac{17}{315}x^7+... tanx=x+31x3+152x5+31517x7+...

②: a r c t a n x arctanx arctanx

a r c t a n x = x 1 3 x 3 + 1 5 x 5 . . . . arctanx=x-\frac{1}{3}x^3+\frac{1}{5}x^5-.... arctanx=x31x3+51x5....

③: a r c s i n x arcsinx arcsinx

a r c s i n x = x + 1 6 x 3 + 3 40 x 5 + . . . arcsinx=x+\frac{1}{6}x^3+\frac{3}{40}x^5+... arcsinx=x+61x3+403x5+...

④: ( 1 + x ) a (1+x)^a (1+x)a

( 1 + x ) a = 1 + a x + a ( a 1 ) 2 ! x 2 + a ( a 1 ) ( a 2 ) 3 ! x 3 + . . . (1+x)^a=1+ax+\frac{a(a-1)}{2!}x^2+\frac{a(a-1)(a-2)}{3!}x^3+... (1+x)a=1+ax+2!a(a1)x2+3!a(a1)(a2)x3+...

⑤: ( 1 + x ) 1 x (1+x)^{\frac{1}{x}} (1+x)x1

( 1 + x ) 1 x = e ( 1 1 2 x + 11 24 x 2 7 16 x 3 + . . . ) (1+x)^{\frac{1}{x}}=e(1-\frac{1}{2}x+\frac{11}{24}x^2-\frac{7}{16}x^3+...) (1+x)x1=e(121x+2411x2167x3+...)

斯托克斯公式

F d r = × F d S \oint F\cdot dr=\iint \triangledown \times F dS Fdr=×FdS

( F x d x + F y d y + F z d z ) = <mstyle displaystyle="false" scriptlevel="0"> d y d z </mstyle> <mstyle displaystyle="false" scriptlevel="0"> d x d z </mstyle> <mstyle displaystyle="false" scriptlevel="0"> d x d y </mstyle> <mstyle displaystyle="false" scriptlevel="0"> x </mstyle> <mstyle displaystyle="false" scriptlevel="0"> y </mstyle> <mstyle displaystyle="false" scriptlevel="0"> z </mstyle> <mstyle displaystyle="false" scriptlevel="0"> F x </mstyle> <mstyle displaystyle="false" scriptlevel="0"> F y </mstyle> <mstyle displaystyle="false" scriptlevel="0"> F z </mstyle> d S \oint(F_xdx+F_ydy+F_zdz)=\iint\begin{vmatrix} dydz& dxdz &dxdy \\ \frac{\partial}{\partial x}&\frac{\partial}{\partial y} &\frac{\partial}{\partial z} \\ F_x &F_y &F_z\end{vmatrix}dS (Fxdx+Fydy+Fzdz)=dydzxFxdxdzyFydxdyzFzdS

( F x d x + F y d y + F z d z ) = ( F z y F y z ) d y d z ( F z x F x z ) d x d z + ( F y x F x y ) d x d y \oint(F_xdx+F_ydy+F_zdz)=\iint(\frac{\partial F_z}{\partial y}-\frac{\partial F_y}{\partial z})dydz-(\frac{\partial F_z}{\partial x}-\frac{\partial F_x}{\partial z})dxdz+(\frac{\partial F_y}{\partial x}-\frac{\partial F_x}{\partial y})dxdy (Fxdx+Fydy+Fzdz)=(yFzzFy)dydz(xFzzFx)dxdz+(xFyyFx)dxdy

曲率

k = d θ d s k=\frac{d\theta}{ds} k=dsdθ
k = y = t a n θ θ = a r c t a n y d θ = d y 1 + y 2 = y d x 1 + y 2 = y 1 + y 2 d x 而k=y'=tan\theta\Rightarrow\theta=arctany'\Rightarrow d\theta=\frac{dy'}{1+y'^2}=\frac{y''dx}{1+y'^2}=\frac{y''}{1+y'^2}dx k=y=tanθθ=arctanydθ=1+y2dy=1+y2ydx=1+y2ydx
d s = 1 + y 2 d x 而ds=\sqrt{1+y'^2}dx ds=1+y2 dx
k = y ( 1 + y 2 ) 3 2 \therefore k=\frac{y''}{(1+y'^2)^{\frac{3}{2}}} k=(1+y2)23y

曲率中心

{ <mstyle displaystyle="false" scriptlevel="0"> x o = x y ( 1 + y 2 ) y </mstyle> <mstyle displaystyle="false" scriptlevel="0"> </mstyle> <mstyle displaystyle="false" scriptlevel="0"> y o = y + 1 + y 2 y </mstyle> \left\{\begin{matrix} x_o=x-\frac{y'(1+y'^2)}{y''}\\ \\ y_o=y+\frac{1+y'^2}{y''} \end{matrix}\right. xo=xyy(1+y2)yo=y+y1+y2

经典积分背下来

常用不常规积分
1 s i n x d x = l n ( t a n x 2 ) + C \int\frac{1}{sinx}dx=ln(tan\frac{x}{2})+C这个用万能公式比较好计算 sinx1dx=ln(tan2x)+C
1 1 + x 2 d x = l n ( x + 1 + x 2 ) + C \int\frac{1}{\sqrt{1+x^2}}dx=ln(x+\sqrt{1+x^2})+C 1+x2 1dx=ln(x+1+x2 )+C

需要背的

t a n ( π 8 ) = 2 1 tan(\frac{\pi}{8})=\sqrt2-1 tan(8π)=2 1
t a n ( 3 π 8 ) = 2 + 1 tan(\frac{3\pi}{8})=\sqrt2+1 tan(83π)=2 +1

不等式总结

均值不等式

2 1 a + 1 b a b a + b 2 \frac{2}{\frac{1}{a}+\frac{1}{b}}\leq\sqrt{ab}\leq\frac{a+b}{2} a1+b12ab 2a+b
以前就只知道右边这个 a b a + b 2 \sqrt{ab}\leq\frac{a+b}{2} ab 2a+b,那左边这个 2 1 a + 1 b a b \frac{2}{\frac{1}{a}+\frac{1}{b}}\leq\sqrt{ab} a1+b12ab 是怎么来的喃?
a + b 2 a b \frac{a+b}{2}\geq\sqrt{ab} 2a+bab 取倒数
1 a + b 2 1 a b \frac{1}{\frac{a+b}{2}}\leq\frac{1}{\sqrt{ab}} 2a+b1ab 1
2 a + b 1 a 1 b \frac{2}{a+b}\leq\sqrt{\frac{1}{a}\frac{1}{b}} a+b2a1b1
因为 a , b a,b a,b都是正数,所以把 1 a \frac{1}{a} a1看成新的 a a a,把 1 b \frac{1}{b} b1看成新的 b b b,于是就得到了 2 1 a + 1 b a b \frac{2}{\frac{1}{a}+\frac{1}{b}}\leq\sqrt{ab} a1+b12ab

Young不等式

x y x p p + y q q , 1 p + 1 q = 1 , x , y , p , q > 0 xy\leq\frac{x^p}{p}+\frac{y^q}{q},其中\frac{1}{p}+\frac{1}{q}=1,x,y,p,q>0 xypxp+qyq,p1+q1=1,x,y,p,q>0
这是看张宇18讲看到的,以前见都没见过T_T

需要用到凹凸不等式来弄:

凹凸不等式

f ( λ x 1 + ( 1 λ ) y 1 ) λ f ( x 1 ) + ( 1 λ ) f ( y 1 ) , f(\lambda x_1+(1-\lambda)y_1)\geq\lambda f(x_1)+(1-\lambda)f(y_1),凸函数情况 f(λx1+(1λ)y1)λf(x1)+(1λ)f(y1),
然后 l n ( x ) ln(x) ln(x)是凸函数
所以有 l n ( λ x 1 + ( 1 λ ) y 1 ) λ l n ( x 1 ) + ( 1 λ ) l n ( y 1 ) ln(\lambda x_1+(1-\lambda)y_1)\geq\lambda ln(x_1)+(1-\lambda)ln(y_1) ln(λx1+(1λ)y1)λln(x1)+(1λ)ln(y1)
然后再把 x 1 x p , y 1 y q , λ 1 p , 1 λ 1 1 q x_1换成x^p,y_1换成y^q,\lambda换成\frac{1}{p},1-\lambda换成1-\frac{1}{q} x1xp,y1yq,λp1,1λ1q1
l n ( x p p + y q q ) 1 p l n ( x p ) + 1 q l n ( y q ) = l n ( x y ) ln(\frac{x^p}{p}+\frac{y^q}{q})\geq\frac{1}{p}ln(x^p)+\frac{1}{q}ln(y^q)=ln(xy) ln(pxp+qyq)p1ln(xp)+q1ln(yq)=ln(xy)得证

向量不等式(离散柯西不等式)

连续情况就是柯西施瓦茨不等式
( a 1 a 2 + b 1 b 2 ) 2 ( a 1 2 + a 2 2 ) ( b 1 2 + b 2 2 ) (a_1a_2+b_1b_2)^2\leq(a_1^2+a_2^2)(b_1^2+b_2^2) (a1a2+b1b2)2(a12+a22)(b12+b22)
( a 1 a 2 + b 1 b 2 + a 3 b 3 ) 2 ( a 1 2 + a 2 2 + a 3 2 ) ( b 1 2 + b 2 2 + b 3 2 ) (a_1a_2+b_1b_2+a_3b_3)^2\leq(a_1^2+a_2^2+a_3^2)(b_1^2+b_2^2+b_3^2) (a1a2+b1b2+a3b3)2(a12+a22+a32)(b12+b22+b32)

哇~这个不等式原来是由向量推过来的啊T_T
在二维平面中,设 A ( x 1 , y 1 ) , B ( x 2 , y 2 ) A(x_1,y_1),B(x_2,y_2) A(x1,y1),B(x2,y2)

c o s θ = <mover accent="true"> O A </mover> <mover accent="true"> O B </mover> <mover accent="true"> O A </mover> <mover accent="true"> O B </mover> 1 cos\theta=\frac{\overrightarrow{OA}\cdot \overrightarrow{OB}}{|\overrightarrow{OA}|\cdot \overrightarrow{OB}}\leq1 cosθ=OA OB OA OB 1

<mover accent="true"> O A </mover> <mover accent="true"> O B </mover> <mover accent="true"> O A </mover> <mover accent="true"> O B </mover> = x 1 x 2 + y 1 y 2 x 1 2 + y 1 2 x 2 2 + y 2 2 1 \frac{\overrightarrow{OA}\cdot \overrightarrow{OB}}{|\overrightarrow{OA}|\cdot \overrightarrow{OB}}=\frac{x_1x_2+y_1y_2}{\sqrt{x_1^2+y_1^2}\sqrt{x_2^2+y_2^2}}\leq1 OA OB OA OB =x12+y12 x22+y22 x1x2+y1y21

然后再平方
( x 1 x 2 + y 1 y 2 ) 2 ( x 1 2 + y 1 2 ) ( x 2 2 + y 2 2 ) (x_1x_2+y_1y_2)^2\leq(x_1^2+y_1^2)(x_2^2+y_2^2) (x1x2+y1y2)2(x12+y12)(x22+y22)

扩展的那种就是在三维坐标下

A ( x 1 , y 1 , z 1 ) , B ( x 2 , y 2 , z 2 ) A(x_1,y_1,z_1),B(x_2,y_2,z_2) A(x1,y1,z1),B(x2,y2,z2)

<mover accent="true"> O A </mover> <mover accent="true"> O B </mover> <mover accent="true"> O A </mover> <mover accent="true"> O B </mover> = x 1 x 2 + y 1 y 2 + z 1 z 2 x 1 2 + y 1 2 + z 1 2 x 2 2 + y 2 2 + z 2 2 1 \frac{\overrightarrow{OA}\cdot \overrightarrow{OB}}{|\overrightarrow{OA}|\cdot \overrightarrow{OB}}=\frac{x_1x_2+y_1y_2+z_1z_2}{\sqrt{x_1^2+y_1^2+z_1^2}\sqrt{x_2^2+y_2^2+z_2^2}}\leq1 OA OB OA OB =x12+y12+z12 x22+y22+z22 x1x2+y1y2+z1z21

( x 1 x 2 + y 1 y 2 + z 1 z 2 ) 2 ( x 1 2 + y 1 2 + z 1 2 ) ( x 2 2 + y 2 2 + z 2 2 ) (x_1x_2+y_1y_2+z_1z_2)^2\leq(x_1^2+y_1^2+z_1^2)(x_2^2+y_2^2+z_2^2) (x1x2+y1y2+z1z2)2(x12+y12+z12)(x22+y22+z22)

函数不等式

①:
a r c t a n x x a r c s i n x , ( 0 x 1 ) arctanx\leq x\leq arcsinx,(0\leq x\leq 1) arctanxxarcsinx,(0x1)
②:
1 1 + x < l n ( 1 + 1 x ) < 1 x , ( x > 0 ) \frac{1}{1+x}<ln(1+\frac{1}{x})<\frac{1}{x},(x>0) 1+x1<ln(1+x1)<x1,(x>0)
f ( x ) = l n ( x ) , [ x , x + 1 ] f(x)=ln(x),在[x,x+1]上用拉格朗日中值定理 f(x)=ln(x),[x,x+1]
l n ( 1 + 1 x ) = l n ( 1 + x ) l n ( x ) = 1 ξ , ξ ( x , x + 1 ) ln(1+\frac{1}{x})=ln(1+x)-ln(x)=\frac{1}{\xi},\xi\in(x,x+1) ln(1+x1)=ln(1+x)ln(x)=ξ1,ξ(x,x+1)
1 1 + x < 1 ξ < 1 x \therefore \frac{1}{1+x}<\frac{1}{\xi}<\frac{1}{x} 1+x1<ξ1<x1
③:
s i n x < x < t a n x , ( 0 < x < π 2 ) sinx<x<tanx,(0<x<\frac{\pi}{2}) sinx<x<tanx,(0<x<2π)
④:
e x x 1 e^x\geq x-1 exx1
⑤:
l n ( x ) x 1 , ( x > 0 ) ln(x)\leq x-1,(x>0) ln(x)x1,(x>0)

导数以及原函数的奇偶性

①:奇(偶)函数的导数是偶(奇)函数
②:偶函数的所有原函数只有一个是奇函数,就是只要那个常数C=0的
③:奇函数的所有原函数都是偶函数,因为那个常数C是多少不影响

求和与积分转换

a b f ( x ) d x = <munder> lim n </munder> <munderover> i = 1 n </munderover> f ( a + ( b a ) n i ) ( b a ) n \int_a^bf(x)dx=\lim_{n\to\infty}\sum_{i=1}^nf(a+\frac{(b-a)}{n}i)\cdot\frac{(b-a)}n{} abf(x)dx=nlimi=1nf(a+n(ba)i)n(ba)
来个三重积分的:
f ( x , y , z ) d v = <munder> lim n </munder> <munderover> i = 1 n </munderover> <munderover> j = 1 n </munderover> <munderover> k = 1 n </munderover> f ( a + b a n i , c + d c n j , e + f e n k ) ( b a ) n ( d c ) n ( f e ) n \iiint f(x,y,z)dv=\lim_{n\to\infty}\sum_{i=1}^n\sum_{j=1}^n\sum_{k=1}^nf(a+\frac{b-a}{n}i,c+\frac{d-c}{n}j,e+\frac{f-e}{n}k)\frac{(b-a)}{n}\frac{(d-c)}{n}\frac{(f-e)}{n} f(x,y,z)dv=nlimi=1nj=1nk=1nf(a+nbai,c+ndcj,e+nfek)n(ba)n(dc)n(fe)

收集一些求和变积分的例子,以后看着要反应过来

①:
<munder> lim n </munder> <munderover> k = 1 n </munderover> 1 n + k = <munder> lim n </munder> <munderover> k = 1 n </munderover> 1 1 + k n 1 n = 0 1 1 1 + x d x = l n 2 \lim_{n\to\infty}\sum_{k=1}^n\frac{1}{n+k}=\lim_{n\to\infty}\sum_{k=1}^n\frac{1}{1+\frac{k}{n}}\frac{1}{n}=\int_0^1\frac{1}{1+x}dx=ln2 nlimk=1nn+k1=nlimk=1n1+nk1n1=011+x1dx=ln2

微分中值定理需要构造的函数

常见辅助函数
⑤:
f ( ξ ) + g ( ξ ) f ( ξ ) = 0 f'(\xi)+g(\xi)f(\xi)=0 f(ξ)+g(ξ)f(ξ)=0
需要构造: F ( x ) = f ( x ) e g ( x ) d x F(x)=f(x)e^{\int g(x)dx} F(x)=f(x)eg(x)dx
同理,如果是
f ( ξ ) + g ( ξ ) f ( ξ ) = 0 f''(\xi)+g(\xi)f'(\xi)=0 f(ξ)+g(ξ)f(ξ)=0
需要构造: F ( x ) = f ( ξ ) e g ( x ) d x F(x)=f'(\xi)\cdot e^{\int g(x)dx} F(x)=f(ξ)eg(x)dx
f ( ξ ) + g ( ξ ) 0 ξ f ( t ) d t = 0 f'(\xi)+g(\xi)\int_0^\xi f(t)dt=0 f(ξ)+g(ξ)0ξf(t)dt=0
需要构造: F ( x ) = 0 x f ( t ) d t e g ( x ) d x F(x)=\int_0^x f(t)dt\cdot e^{\int g(x)dx} F(x)=0xf(t)dteg(x)dx
⑥:
f ( ξ ) + f ( ξ ) t a n ξ = 0 f'(\xi)+f''(\xi)tan\xi=0 f(ξ)+f(ξ)tanξ=0
这个高阶导数反而不是单项,这样不好做,所以同时除上一个 t a n 2 ξ tan^2\xi tan2ξ把高阶导数变成单项
f ( ξ ) + f ( ξ ) 1 t a n ξ = 0 f''(\xi)+f'(\xi)\frac{1}{tan\xi}=0 f(ξ)+f(ξ)tanξ1=0
就阔以构造:
F ( x ) = f ( x ) e 1 t a n x d x = f ( x ) s i n x F(x)=f'(x)e^{\int\frac{1}{tanx}dx}=f'(x)sinx F(x)=f(x)etanx1dx=f(x)sinx

积分中值定理

注意:积分中值定理弄的 ξ \xi ξ的范围是闭区间,有些证明题是开区间,用这个就错了~

积分第一中值定理

a b f ( x ) g ( x ) d x = f ( ξ ) a b g ( x ) d x \int _ { a } ^ { b } f ( x ) g ( x ) d x = f ( \xi ) \int _ { a } ^ { b } g ( x ) d x abf(x)g(x)dx=f(ξ)abg(x)dx
其中 g ( x ) g(x) g(x)不变号
如果 g ( x ) = 1 g(x)=1 g(x)=1
a b f ( x ) g ( x ) d x = f ( ξ ) a b d x = f ( ξ ) ( b a ) \int _ { a } ^ { b } f ( x ) g ( x ) d x = f ( \xi ) \int _ { a } ^ { b } d x=f(\xi)(b-a) abf(x)g(x)dx=f(ξ)abdx=f(ξ)(ba)
再把 f ( x ) f(x) f(x)换成 f ( x ) f'(x) f(x)就成了 拉格朗日微分中值定理了

积分第二中值定理

a b f ( x ) g ( x ) d x = g ( a ) a ξ f ( x ) d x + g ( b ) ξ b f ( x ) d x \int _ { a } ^ { b } f ( x ) g ( x ) d x = g ( a ) \int _ { a } ^ { \xi } f ( x ) d x + g ( b ) \int _ { \xi } ^ { b } f ( x ) d x abf(x)g(x)dx=g(a)aξf(x)dx+g(b)ξbf(x)dx
没怎么遇到过T_T

积分不等式

常见积分不等式

曲面积分

有点忘了曲面积分了。。。特别是第一类和第二类曲面积分相互转化的时候是咋个来的
随便一个曲面:
F ( x , y , z ) = 0 F ( x , y , z ) = 0 F(x,y,z)=0
他的法向量:
<mover accent="true"> n </mover> = ( F x , F y , F z ) \vec n = \left( F _ { x } , F _ { y } ,F _ { z } \right) n =(Fx,Fy,Fz)
这个法向量与 X X X轴的夹角就是 α \alpha α
z <mover accent="true"> e </mover> z = ( 0 , 0 , 1 ) z轴的向量\overrightarrow e_z=(0,0,1) ze z=(0,0,1)
其中 F x F_x Fx表示对 x x x求偏导
cos α = <mover accent="true"> n </mover> <mover accent="true"> e </mover> z <mover accent="true"> n </mover> <mover accent="true"> e </mover> z = F x F x 2 + F y 2 + F z 2 \cos \alpha =\frac{\overrightarrow n\cdot \overrightarrow e_z}{|\overrightarrow n|\cdot |\overrightarrow e_z|}= \frac { F _ { x } } { \sqrt { F _ { x } ^ { 2 } + F _ { y } ^ 2+ F _ { z } ^ { 2 } } } cosα=n e zn e z=Fx2+Fy2+Fz2 Fx
c o s β = F y F x 2 + F y 2 + F z 2 cos\beta=\frac { F _ { y } } { \sqrt { F _ { x } ^ { 2 } + F _ { y } ^ 2+ F _ { z } ^ { 2 } } } cosβ=Fx2+Fy2+Fz2 Fy
c o s γ = F z F x 2 + F y 2 + F z 2 cos\gamma=\frac { F _ { z } } { \sqrt { F _ { x } ^ { 2 } + F _ { y } ^ 2+ F _ { z } ^ { 2 } } } cosγ=Fx2+Fy2+Fz2 Fz
分子分母同时除以 F z F_z Fz
cos α = F x F z ( F x F z ) 2 + ( F y F x ) 2 + 1 \cos \alpha=\frac{\frac{F_x}{F_z}}{\sqrt { \left( \frac { F_x } { F_z } \right) ^ { 2 } + \left( \frac { F_y } { F _x } \right) ^ { 2 } + 1 }} cosα=(FzFx)2+(FxFy)2+1 FzFx

cos β = F y F z ( F x F z ) 2 + ( F y F x ) 2 + 1 \cos \beta=\frac{\frac{F_y}{F_z}}{\sqrt { \left( \frac { F_x } { F_z } \right) ^ { 2 } + \left( \frac { F_y } { F _x } \right) ^ { 2 } + 1 }} cosβ=(FzFx)2+(FxFy)2+1 FzFy
cos γ = F z F z ( F x F z ) 2 + ( F y F x ) 2 + 1 \cos \gamma=\frac{\frac{F_z}{F_z}}{\sqrt { \left( \frac { F_x } { F_z } \right) ^ { 2 } + \left( \frac { F_y } { F _x } \right) ^ { 2 } + 1 }} cosγ=(FzFx)2+(FxFy)2+1 FzFz
其中 F x F z = Z x \frac{F_x}{F_z}=-Z'_x FzFx=Zx
为什么喃?
就是学隐函数求导的时候
F ( x , y , z ) = 0 F ( x , y , z ) = 0 F(x,y,z)=0两边同时对 x x x求导
F x + F z Z x = 0 F_x+F_z\cdot Z'_x=0 Fx+FzZx=0
<mtext>   </mtext> Z x = F x F z \therefore\ Z'_x=-\frac{F_x}{F_z}  Zx=FzFx
同理 F y F z = Z y \frac{F_y}{F_z}=-Z'_y FzFy=Zy
所以:
cos α = F x F z ( F x F z ) 2 + ( F y F x ) 2 + 1 = Z x ( Z x ) 2 + ( Z y ) 2 + 1 = Z x Z x 2 + Z y 2 + 1 \cos\alpha=\frac{\frac{F_x}{F_z}}{\sqrt { \left( \frac { F_x } { F_z } \right) ^ { 2 } + \left( \frac { F_y } { F _x } \right) ^ { 2 } + 1 }}=\frac{-Z'_x}{\sqrt{(-Z'_x)^2+(-Z'_y)^2+1}}=\frac{-Z'_x}{\sqrt{{Z'_x}^2+{Z'_y}^2+1}} cosα=(FzFx)2+(FxFy)2+1 FzFx=(Zx)2+(Zy)2+1 Zx=Zx2+Zy2+1 Zx

cos β = F y F z ( F x F z ) 2 + ( F y F x ) 2 + 1 = Z y ( Z x ) 2 + ( Z y ) 2 + 1 = Z y Z x 2 + Z y 2 + 1 \cos\beta=\frac{\frac{F_y}{F_z}}{\sqrt { \left( \frac { F_x } { F_z } \right) ^ { 2 } + \left( \frac { F_y } { F _x } \right) ^ { 2 } + 1 }}=\frac{-Z'_y}{\sqrt{(-Z'_x)^2+(-Z'_y)^2+1}}=\frac{-Z'_y}{\sqrt{{Z'_x}^2+{Z'_y}^2+1}} cosβ=(FzFx)2+(FxFy)2+1 FzFy=(Zx)2+(Zy)2+1 Zy=Zx2+Zy2+1 Zy

cos γ = F z F z ( F x F z ) 2 + ( F y F x ) 2 + 1 = 1 ( Z x ) 2 + ( Z y ) 2 + 1 = 1 Z x 2 + Z y 2 + 1 \cos\gamma=\frac{\frac{F_z}{F_z}}{\sqrt { \left( \frac { F_x } { F_z } \right) ^ { 2 } + \left( \frac { F_y } { F _x } \right) ^ { 2 } + 1 }}=\frac{1}{\sqrt{(-Z'_x)^2+(-Z'_y)^2+1}}=\frac{1}{\sqrt{{Z'_x}^2+{Z'_y}^2+1}} cosγ=(FzFx)2+(FxFy)2+1 FzFz=(Zx)2+(Zy)2+1 1=Zx2+Zy2+1 1
注意,上面的情况是投影在 x O y xOy xOy面上,如果是其他面会出现问题,原因如下:
比如 x y z = 0 x-y-z=0 xyz=0写成 F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0那么 F ( x , y , z ) F(x,y,z)是多少喃? F(x,y,z)
既阔以是 F ( x , y , z ) = x y z F(x,y,z)=x-y-z F(x,y,z)=xyz
又可以是 F ( x , y , z ) = x + y + z F(x,y,z)=-x+y+z F(x,y,z)=x+y+z没毛病吧
所以必须保证垂直于投影面的轴的变量在 F F F中前面系数是正的才行
也就是说,如果要投影在 x O y xOy xOy面, F ( x , y , z ) = y x + z F(x,y,z)=y-x+z F(x,y,z)=yx+z这种样子才行, y y y变量前面的系数要是正的

还有就是比如那种柱形,比如 y 2 + z 2 = 1 y^2+z^2=1 y2+z2=1,就是平行x轴的,往 y O z yOz yOz面投影的时候,由于 F x F_x Fx算出来等于0,因此计算出来的 c o s α cos\alpha cosα就等于0了,还是有点问题

要不就按照学姐公式来吧
记一下:
①:往 x O y xOy xOy投影,函数要写成 z = z ( x , y ) z=z(x,y) z=z(x,y)
c o s θ = 1 1 + z x 2 + z y 2 cos\theta=\frac{1}{\sqrt{1+z_x^2+z_y^2}} cosθ=1+zx2+zy2 1

①:往 x O z xOz xOz投影,函数要写成 y = y ( x , z ) y=y(x,z) y=y(x,z)
c o s θ = 1 1 + y x 2 + y z 2 cos\theta=\frac{1}{\sqrt{1+y_x^2+y_z^2}} cosθ=1+yx2+yz2 1

①:往 y O z yOz yOz投影,函数要写成 x = x ( y , z ) x=x(y,z) x=x(y,z)
c o s θ = 1 1 + x y 2 + x z 2 cos\theta=\frac{1}{\sqrt{1+x_y^2+x_z^2}} cosθ=1+xy2+xz2 1