做莫比乌斯的题所需要的代码:
#include"bits/stdc++.h"
#define C(n,m) ((long long)fac[(n)]*inv[(m)]%MOD*inv[(n)-(m)]%MOD)
using namespace std;
const int maxn=3e5+5;
const int MOD=1e9+7;
char mu[maxn];
int sum[maxn];
vector<int>prime;
bool vis[maxn];
int fac[maxn]={1,1},inv[maxn]={1,1};
long long ksm(long long a,long long b,long long mod)
{
long long res=1,base=a;
while(b)
{
if(b&1)res=(res*base)%mod;
base=(base*base)%mod;
b>>=1;
}
return res;
}
void Init(int NN)
{
memset(vis,1,sizeof(vis));
mu[1]=1;
for(int i=2;i<=NN;i++)
{
if(vis[i])
{
prime.push_back(i);
mu[i]=-1;
}
for(int j=0;j<prime.size()&&i*prime[j]<=NN;j++)
{
vis[i*prime[j]]=0;
if(i%prime[j]==0)
{
mu[i*prime[j]]=0;
break;
}
else mu[i*prime[j]]=-mu[i];
}
fac[i]=(long long)fac[i-1]*i%MOD;
inv[i]=ksm(fac[i],MOD-2,MOD);
}
}
long long F(int d,int n,int m)//F(d)
{
return (long long)(n/d)*(m/d);
}
long long f(int x,int n,int m)//f(d)
{
if(n>m)swap(n,m);
long long res=0;
int j;
for(int i=1,d=x;i<=n;i=j+1)//错误地方:d每次的值和i不一样
{
j=min(n/(n/i),m/(m/i));//要两个里面最小的
res+=(long long)(sum[j]-sum[i-1])*F(d,n,m);
d+=x*(j-i+1);
}
return res;
}