时间复杂度:O(n^2m)
Dinic是比较容易实现的效率最高的网络流算法之一,一般能够处理10^4~10^5规模的网络
#include<iostream>
#include<cstring>
#include<queue>
#include<cstdio>
using namespace std;
const int inf=1<<29,N=50010,M=300010;
int head[N],ver[M],edge[M],Next[M],d[N],now[M];
int n,m,s,t,tot,maxflow;
queue<int> q;
void add(int x,int y,int z){
ver[++tot]=y,edge[tot]=z,Next[tot]=head[x],head[x]=tot;
ver[++tot]=x,edge[tot]=0,Next[tot]=head[y],head[y]=tot;
}
bool bfs(){
memset(d,0,sizeof d);
while(q.size()) q.pop();
q.push(s);d[s]=1;now[s]=head[s];
while(q.size()){
int x=q.front();q.pop();
for(int i=head[x];i;i=Next[i]){
if(edge[i]&&!d[ver[i]]){
q.push(ver[i]);
now[ver[i]]=head[ver[i]];
d[ver[i]]=d[x]+1;
if(ver[i]==t) return 1;
}
}
}
return 0;
}
int dinic(int x,int flow){
if(x==t) return flow;
int rest=flow,k,i;
for(i=now[x];i&&rest;i=Next[i])
if(edge[i]&&d[ver[i]]==d[x]+1){
k=dinic(ver[i],min(rest,edge[i]));
if(!k) d[ver[i]]=0;
edge[i]-=k;
edge[i^1]+=k;
rest-=k;
}
now[x]=i;
return flow-rest;
}
int main(){
cin>>n>>m;
cin>>s>>t;
tot=1;
for(int i;i<=m;i++){
int x,y,c;
scanf("%d%d%d",&x,&y,&c);
add(x,y,c);
}
int flow=0;
while(bfs())
while(flow=dinic(s,inf)) maxflow+=flow;
cout<<maxflow;
return 0;
} 
京公网安备 11010502036488号