引子

现有一公式,求 a n s = i = 1 n n i ans = \sum_{i = 1} ^ {n}\lfloor{\frac{n}{i}}\rfloor ans=i=1nin
观察发现我们可以在O(n)的时间复杂度内解决该问题
继续观察,会发现 n i \lfloor{\frac{n}{i}}\rfloor in在一段区间内是具有相同的值
n i = k \lfloor{\frac{n}{i}}\rfloor = k in=k 则有
n n i < = n n i = j \lfloor{\frac{n}{\lfloor\frac{n}{i}\rfloor}}\rfloor <= \frac{n}{\lfloor\frac{n}{i}\rfloor} = j inn<=inn=j
故当前块最远位置为j, 块长为(j - i + 1)

题目分析

牛客-数论之神
对于 n 1 , n 2 , , n n 1 , n n \lfloor{\frac{n}{1}}\rfloor, \lfloor{\frac{n}{2}}\rfloor, ……, \lfloor{\frac{n}{n - 1}}\rfloor, \lfloor{\frac{n}{n}}\rfloor 1n,2n,,n1n,nn
当 2 * k <= n < k * (k + 1) 共有2 * k - 1种不同的数
当 k * (k + 1) <= n < (k + 1) * (k + 1) 共有 2 * k 种不同的数
对结果升序
1, 2, ……, k, n / k, n / (k - 1), ……, n

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
int main()
{
    ios::sync_with_stdio(false);
    int t;
    cin >> t;
    while(t --)
    {
        ll n, p;
        cin >> n >> p;//第p大
        ll k = (ll)sqrt(n);
        ll sum = 2 * k;//k * k <= n < k * (k + 1) 有(2 * k -1)个不同值
        if(n < k * (k + 1))//k * (k + 1) <= n < (k + 1) * (k + 1) 有(2 * k)个不同值
            sum --;
        ll ans;
        if(p <= k)//降序
        {
            ans = n / p;
        }
        else
        {
            ans = sum - p + 1;//有连续的1~k
        }
        cout << sum << " " << ans << endl;
    }
}


bzoj-1968-约数研究
题目定义f(x) 为x的约数个数
先求 a n s = i = 1 n f ( i ) ans = \sum_{i = 1}^{n}f(i) ans=i=1nf(i)
将式子转换一下其实就是 a n s = i = 1 n n i ans = \sum_{i = 1} ^ {n}\lfloor{\frac{n}{i}}\rfloor ans=i=1nin
简单分块即可

/*
题意是1到n的约数个数之和
可以转换成1到n的(n / i)向下取整
一维数论分块模板题
*/
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
int main()
{
    ios::sync_with_stdio(false);
    int n;
    cin >> n;
    ll ans = 0;
    for(int i = 1, j = 1; i <= n; i = j + 1)
    {
        j = n / (n / i);//当前块能到达的最远位置
        ans += 1l * (j - i + 1) * (n / i);//(n / i)为当前块的大小
    }
    cout << ans << endl;
}

bzoj 1257 余数之和
题目要求
<mstyle displaystyle="true" scriptlevel="0"> a n s = <munderover> i = 1 n </munderover> ( k m o d    i ) </mstyle> <mstyle displaystyle="true" scriptlevel="0"> a n s = <munderover> i = 1 n </munderover> ( k i k i ) </mstyle> <mstyle displaystyle="true" scriptlevel="0"> a n s = n k <munderover> i = 1 n </munderover> ( i k i ) </mstyle> \begin{aligned} ans = \sum_{i = 1}^{n}(k \mod i) \\ ans = \sum_{i = 1}^{n}(k - i * \lfloor{\frac{k}{i}}\rfloor)\\ ans = n * k - \sum_{i = 1}^{n}(i * \lfloor{\frac{k}{i}}\rfloor) \end{aligned} ans=i=1n(kmodi)ans=i=1n(kiik)ans=nki=1n(iik)
在一定区间 k i \lfloor{\frac{k}{i}}\rfloor ik为定值,i成等差数列变化

/*
数论分块基础题1到n的floor(k / i) * i (floor为向下去整)
*/
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
int main()
{
    ios::sync_with_stdio(false);
    int n, k;
    cin >> n >> k;
    ll ans = 1ll * n * k;
    if(n >= k)
        n = k;
    for(int i = 1, j = 1; i <= n; i = j + 1)
    {
        j = k / (k / i);
        int d = k / i;
        if(j >= n)
            j = n;
        ans -= 1ll * (j - i + 1) * (j + i) * d / 2;//i呈等差数列
    }
    cout << ans << endl;
}

bzoj 2956 模积和
i = 1 n j = 1 m ( n m o d    i ) ( m m o d    j ) \sum_{i = 1}^{n}\sum_{j = 1}^{m}(n \mod i) * (m \mod j) i=1nj=1m(nmodi)(mmodj) (i != j)
原式可变:
<mstyle displaystyle="true" scriptlevel="0"> <munderover> i = 1 n </munderover> <munderover> j = 1 m </munderover> ( n m o d    i ) ( m m o d    j ) <munderover> i = 1 min ( n , m ) </munderover> ( n m o d    i ) ( m m o d    i ) </mstyle> <mstyle displaystyle="true" scriptlevel="0"> <munderover> i = 1 n </munderover> ( n m o d    i ) <munderover> j = 1 m </munderover> ( m m o d    j ) <munderover> i = 1 min ( n , m ) </munderover> ( n m o d    i ) ( m m o d    i ) </mstyle> \begin{aligned} \sum_{i = 1}^{n}\sum_{j = 1}^{m}(n \mod i) * (m \mod j) - \sum_{i = 1}^{\min(n, m)}(n \mod i) * (m \mod i)\\ \sum_{i = 1}^{n}(n \mod i) * \sum_{j = 1}^{m}(m \mod j) - \sum_{i = 1}^{\min(n, m)}(n \mod i) * (m \mod i) \end{aligned} i=1nj=1m(nmodi)(mmodj)i=1min(n,m)(nmodi)(mmodi)i=1n(nmodi)j=1m(mmodj)i=1min(n,m)(nmodi)(mmodi)
后式可变:
<mstyle displaystyle="true" scriptlevel="0"> <munderover> i = 1 min ( n , m ) </munderover> ( n m o d    i ) ( m m o d    i ) </mstyle> <mstyle displaystyle="true" scriptlevel="0"> <munderover> i = 1 min ( n , m ) </munderover> ( n i n i ) ( m i m i ) </mstyle> <mstyle displaystyle="true" scriptlevel="0"> <munderover> i = 1 min ( n , m ) </munderover> ( n m n i m i m i n i + i 2 n i m i ) </mstyle> \begin{aligned} \sum_{i = 1}^{\min(n, m)}(n \mod i) * (m \mod i)\\ \sum_{i = 1}^{\min(n, m)}(n - i * \lfloor{\frac{n}{i}}\rfloor) * (m - i * \lfloor{\frac{m}{i}}\rfloor)\\ \sum_{i = 1}^{\min(n, m)} (n * m - n * i \lfloor{\frac{m}{i}}\rfloor - m * i \lfloor{\frac{n}{i}}\rfloor + i^{2}\lfloor{\frac{n}{i}}\rfloor\lfloor{\frac{m}{i}}\rfloor) \end{aligned} i=1min(n,m)(nmodi)(mmodi)i=1min(n,m)(niin)(miim)i=1min(n,m)(nmniimmiin+i2inim)

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const ll mod = 19940417;//mod不是质数
const ll inv = 3323403;//6在模mod意义下的逆元,6^(phi(mod) - 1)
ll sum(ll l, ll r) { return ((l + r) * (r - l + 1) / 2) % mod; }
ll sum_pow_two(ll n) { return n * (n + 1) % mod * (2 * n + 1) % mod * inv % mod; }//1^2 + 2^2 + …… + n^2 = n * (n + 1) * (2 * n + 1) / 6
ll cal(ll n)
{
    ll ans = n * n % mod;
    for(ll i = 1, j = 1; i <= n; i = j + 1)
    {
        j = n / (n / i);
        ans = (ans - (n / i) * sum(i, j) % mod + mod) % mod;
    } 
    return ans;
}
ll cal(ll n, ll m)
{
    if(n > m)
        swap(n, m);//让n为最小
    ll ans = n * n % mod * m % mod;
    for(ll i = 1, j = 1; i <= n; i = j + 1)
    {
        j = min(n / (n / i), m / (m / i));
        ll t1 = (n * (m / i) % mod + m * (n / i) % mod) % mod * sum(i, j) % mod;
        ll t2 = ((n / i) * (m / i) % mod * (sum_pow_two(1ll * j) - sum_pow_two(1ll * (i - 1)) + mod) % mod + mod) % mod;
        ans = ((ans - t1 + t2) % mod + mod) % mod;
    }
    return ans;
}
int main()
{
    ios::sync_with_stdio(false);
    ll n, m;
    cin >> n >> m;
    ll ans = ((cal(n) * cal(m) % mod - cal(n, m)) % mod + mod) % mod;
    cout << ans << endl;
}