import numpy as np def log_softmax(scores: list) -> np.ndarray: exp_scores = [] for s in scores: exp_scores.append(np.exp(s)) log_exp_scores = [] for e in exp_scores: log_exp_scores.append(np.log(e / np.sum(exp_scores))) result = np.array(log_exp_scores) return result if __name__ == "__main__": scores = eval(input()) print(log_softmax(scores))