import numpy as np


def log_softmax(scores: list) -> np.ndarray:
    exp_scores = []
    for s in scores:
        exp_scores.append(np.exp(s))
    log_exp_scores = []
    for e in exp_scores:
        log_exp_scores.append(np.log(e / np.sum(exp_scores)))
    result = np.array(log_exp_scores)
    return result


if __name__ == "__main__":
    scores = eval(input())
    print(log_softmax(scores))