tensorflow2.0深度学习 keras AUC性能评估
  借鉴:keras中自定义验证集的性能评估(ROC,AUC)
  1. AUC 计算公式
  from tensorflow.keras import backend as K
def auc(y_true, y_pred):
    ptas = tf.stack([binary_PTA(y_true,y_pred,k) for k in np.linspace(0, 1, 1000)],axis=0)
    pfas = tf.stack([binary_PFA(y_true,y_pred,k) for k in np.linspace(0, 1, 1000)],axis=0)
    pfas = tf.concat([tf.ones((1,)) ,pfas],axis=0)
    binSizes = -(pfas[1:]-pfas[:-1])
    s = ptas*binSizes
    return K.sum(s, axis=0)
def binary_PFA(y_true, y_pred, threshold=K.variable(value=0.5)):
    y_pred = K.cast(y_pred >= threshold, 'float32')
    
    N = K.sum(1 - y_true)
    
    FP = K.sum(y_pred - y_pred * y_true)
    return FP/N
def binary_PTA(y_true, y_pred, threshold=K.variable(value=0.5)):
    y_pred = K.cast(y_pred >= threshold, 'float32')
    
    P = K.sum(y_true)
    
    TP = K.sum(y_pred * y_true)
    return TP/P
  2. 运行实例
  
input1 = tf.keras.Input(shape=[x_train.shape[0],],dtype=float32)
X1 = tf.keras.layers.Flatten()(input1)
X1 = tf.keras.layers.BatchNormalization()(X1)
X1 = tf.keras.layers.Dense(16, activation=tf.keras.layers.LeakyReLU(alpha=0.3))(X1)
X1 = tf.keras.layers.Dropout(0.5)(X1)
output = tf.keras.layers.Dense(1, activation='sigmoid')(X1)
model = tf.keras.Model(inputs=input1,outputs=output)
model.sammary()
model.compile(loss='binary_crossentropy',
			  optimizer='adam',
			  metrics=[auc]
)