import math
import numpy as np
def sigmoid(x):
return 1/(1+np.exp(-x))
def single_neuron_model(features, labels, weights, bias):
single = np.dot(features,weights)+bias
pred = sigmoid(single)
probabilities = np.round(pred,4).tolist()
mse = np.sum((pred-labels)**2)/len(pred)
mse = np.round(mse,4)
return probabilities, mse
if __name__ == "__main__":
features = np.array(eval(input()))
labels = np.array(eval(input()))
weights = np.array(eval(input()))
bias = float(input())
print(single_neuron_model(features, labels, weights, bias))