题目链接:https://ac.nowcoder.com/acm/contest/3003/E
题意是要找 并且i,j,k均为正整数 的数对数量,两边同时平方,我们就得到 ,其实也就是需要i,j的乘积是一个完全平方数,我们就直接在n的范围内寻找完全平方数再求一下它的因子数就行了,两次求因子,复杂度在O(n)
代码如下
#include <iostream> #include <cstring> #include <queue> #include <algorithm> #include <cmath> #include <map> #include <set> #define lson rt << 1 #define rson rt << 1 | 1 #define il inline #define ll long long #define LL long long using namespace std; const int maxn = 1e5 + 10; const ll inf = 0x7ffffffffff; const ll mod = 1e9 + 7; template<class T> inline void read(T &res) { char c; T flag = 1; while ((c = getchar()) < '0' || c > '9')if (c == '-')flag = -1; res = c - '0'; while ((c = getchar()) >= '0' && c <= '9')res = res * 10 + c - '0'; res *= flag; } ll t; ll qpow(ll a, ll b) { ll ans = 1;; a %= mod; while (b) { if (b & 1) ans = (ans * a) % mod; a = (a * a) % mod; b >>= 1; } return ans % mod; } int main() { ll n,ans=0; cin>>n; for(ll i=1;i*i<=n;i++){ ll res=0; for(ll j=1;j*j<=i*i;j++){ if((i*i)%j==0) res++; } ans+=2*res-1; } cout<<ans<<endl; return 0; }