A. Falfa with Polygon
Solution
考虑我们选出的凸包,从1到n看就只有一条边是从较大编号连到较小编号,考虑dp出表示长度为k的从开始到结束的子序列的最大长度,其与i、j两点长度的和就是凸包的周长。
写出的转移方程如下
这种运算可以利用矩阵快速幂加速递推过程,运算方式与矩阵乘法类似,满足结合律。但直接这样做复杂度是的。
满足四边形不等式,设的决策点为,因此有
枚举长度从小到大进行转移,维护决策点和答案,矩阵乘法的复杂度降为。
总时间复杂度。
struct Matrix {
int n, m;
vector<vector<double> >a;
Matrix() {}
Matrix(int n, int m): n(n), m(m) { a.resize(n, vector<double>(m, 0)); }
Matrix operator *(const Matrix &s)const {
Matrix ans = Matrix(n, s.m);
// for (int i = 0; i < n; ++i)
// for (int j = 0; j < n; ++j)
// for (int k = 0; k < n; ++k)
// ans.a[i][j] = max(ans.a[i][j], a[i][k] + s.a[k][j]);
vector<vector<int> >p(n, vector<int>(m, 0));
for (int i = 0; i < n; ++i) {
p[i][i] = i;
}
for (int len = 1; len <= n; ++len) {
for (int i = 0; i + len < n; ++i) {
for (int j = i + len, k = j ? p[i][j - 1] : 0; k <= p[i + 1][j]; ++k) {
if (ans.a[i][j] < a[i][k] + s.a[k][j]) {
ans.a[i][j] = a[i][k] + s.a[k][j];
p[i][j] = k;
}
}
}
}
return ans;
}
};
double x[N], y[N];
Matrix ksm(Matrix base, ll b) {
Matrix ans = Matrix(base.n, base.m);
for (int i = 0; i < base.n; ++i)ans.a[i][i] = 0;
for (; b; b >>= 1, base = base * base)
if (b & 1)ans = ans * base;
return ans;
}
int main() {
int n = fast_IO::read(), k = fast_IO::read();
for (int i = 0; i < n; ++i)
scanf("%lf%lf", x + i, y + i);
Matrix base = Matrix(n, n);
for (int i = 0; i < n; ++i)
for (int j = i + 1; j < n; ++j)
base.a[i][j] = sqrt(pow(x[i] - x[j], 2) + pow(y[i] - y[j], 2));
Matrix ans = ksm(base, k - 1);
double maxn = 0;
for (int i = 0; i < n; ++i)
for (int j = i + 1; j < n; ++j)
maxn = max(maxn, ans.a[i][j] + sqrt(pow(x[i] - x[j], 2) + pow(y[i] - y[j], 2)));
printf("%.10f", maxn);
return 0;
}