A-黑白配
思路:
- 跳过
以下是代码部分
#include <bits/stdc++.h>
using namespace std;
#define endl '\n';
using ll = long long;
const int N = 1e5 + 10;
int a[N];
void solve()
{
int n, t;
cin >> t >> n;
while(t --)
{
int sum1 = 0, sum2 = 0;
for(int i = 0; i < n; i ++)
{
int x; cin >> x;
if(x == 0) sum1 ++;
else sum2 ++;
}
cout << abs(sum1 - sum2) << endl;
}
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(nullptr);cout.tie(nullptr);
int t = 1;
//cin >> t;
while(t --)
solve();
return 0;
}
B-映射
思路:
-如果一个key映射的值有两种及以上,则为NO, 为1种, 则为YES。
以下是代码部分
#include <bits/stdc++.h>
using namespace std;
#define endl '\n';
using ll = long long;
const int N = 1e5 + 10;
int a[N], b[N];
map<int, int> mp;
void solve()
{
mp.clear();
int n; cin >> n;
for(int i = 1; i <= n; i ++) cin >> a[i];
for(int i = 1; i <= n; i ++) cin >> b[i];
for(int i = 1; i <= n; i ++)
{
if(mp[a[i]])
{
if(mp[a[i]] != b[i])
{
cout << "No\n";
return;
}
}
else
mp[a[i]] = b[i];
}
cout << "Yes\n";
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(nullptr);cout.tie(nullptr);
int t = 1;
cin >> t;
while(t --)
solve();
return 0;
}
C-马走日
思路:
- 一道找规律
分类讨论题
- 1.在只有1行 or 1列时的情况
- 2.在3*3时的情况
- 3.在小于2*2时的情况
- 4.在大于3*3时的情况
以下是代码部分
#include <bits/stdc++.h>
using namespace std;
#define endl '\n'
using ll = long long;
const int N = 1e5 + 10;
void solve()
{
ll n, m;
cin >> n >> m;
if(n == 1 || m == 1) cout << "1\n";
else if(n < 3 && m < 3) cout << "1\n";
else if(n == 2 || m == 2) cout << max(n, m) / 2 + (max(n, m) & 1) << endl;
else if(n == 3 && m == 3) cout << "8\n";
else cout << n * m << endl;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(nullptr);cout.tie(nullptr);
int t = 1;
cin >> t;
while(t --)
solve();
return 0;
}
D - 圆
思路:
- 区间dp
为第i个点到第j个点的区间的不相连的线的权值和
以下是代码部分
#include <bits/stdc++.h>
using namespace std;
const int N = 2e3 + 5;
using ll = long long;
//存储l, r, w
struct line {
ll l, r, w;
} a[N];
bool cmp (line x, line y) { return x.r < y.r;}
//dp[i][j] 代表从i指向j的直线
ll dp[N][N];
void solve()
{
int n, m, t = 0;
cin >> n >> m;
//sum记录总权值
ll sum = 0, ans = 0;
//输入
for (int i = 1; i <= m; i++)
{
int l, r, w;
cin >> l >> r >> w;
a[i] = {min(l, r), max(r, l), w};
sum += w;
}
//按照线的大的结点的大小排序,升序
sort (a + 1, a + 1 + m, cmp);
for (int i = 1; i <= m; i++)
{
//复制给l, r, w
auto [l, r, w] = a[i];
//从k连接的所有点
for (int j = t + 1; j <= r; j++)
for (int k = 1; k <= n; k++)
dp[k][j] = dp[k][j - 1];
for (int j = 1; j <= l; j++)
{
//
ll s = 0;
//
s += dp[j][l - 1];
//
s += dp[l + 1][r - 1];
//
dp[j][r] = max (dp[j][r], s + w);
}
t = (int)r;
}
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
ans = max (ans, dp[i][j]);
ans = sum - ans;
cout << ans << '\n';
}
int main() {solve();return 0;}