L Yet Another Bracket Sequence
题目地址:
基本思路:
其实感觉这题比较简单,但是过题人数好像不太多,我们先思考一下不带修改的括号匹配的过程,很明显我们可以定义一个遇到 ( 就加一,遇到 ) 就减一,然后只要整个过程中
都大于等于零,并且最后
等于
就说明括号匹配是成功的。那么我们想按照题目修改后会怎么样,其实很容易发现,如果将当前位置的 ( 变为 ) 实际上就是将之后的
全部减二,同理如果 ) 变为 ( 其实就是将之后的
全部加二。那么我们很容易发现上面的过程和判断包含了区间修改,区间查询和单点查询,所以我们只要用线段树维护修改的过程,每次查询整体的最小是不是大于等于
,并且最后等于
就行了。
参考代码:
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>
using namespace std;
#define IO std::ios::sync_with_stdio(false)
#define int long long
#define rep(i, l, r) for (int i = l; i <= r; i++)
#define per(i, l, r) for (int i = l; i >= r; i--)
#define mset(s, _) memset(s, _, sizeof(s))
#define pb push_back
#define pii pair <int, int>
#define mp(a, b) make_pair(a, b)
#define INF (int)1e18
inline int read() {
int x = 0, neg = 1; char op = getchar();
while (!isdigit(op)) { if (op == '-') neg = -1; op = getchar(); }
while (isdigit(op)) { x = 10 * x + op - '0'; op = getchar(); }
return neg * x;
}
inline void print(int x) {
if (x < 0) { putchar('-'); x = -x; }
if (x >= 10) print(x / 10);
putchar(x % 10 + '0');
}
const int maxn = (int)1e5+10;
struct Node{
int l,r,sum,mn,lazy;
}tr[maxn*4];
int a[maxn];
inline void push_up(int index){//向上更新;
tr[index].sum = tr[index<<1].sum + tr[index<<1|1].sum;
tr[index].mn = min(tr[index<<1].mn,tr[index<<1|1].mn);
}
inline void push_down(int index){//向下传递lazy标记;
if(tr[index].lazy){
tr[index<<1].sum += tr[index].lazy*(tr[index<<1].r-tr[index<<1].l+1);
tr[index<<1|1].sum += tr[index].lazy*(tr[index<<1|1].r-tr[index<<1|1].l+1);
tr[index<<1].mn += tr[index].lazy;
tr[index<<1|1].mn += tr[index].lazy;
tr[index<<1].lazy += tr[index].lazy;
tr[index<<1|1].lazy += tr[index].lazy;
tr[index].lazy = 0;
}
}
void build(int index,int l,int r){//建树;
tr[index].l = l,tr[index].r = r;
if(l==r){
tr[index].sum = a[l];
tr[index].mn = a[l];
return;
}
int mid = (l+r)>>1;
build(index<<1,l,mid);
build(index<<1|1,mid+1,r);
push_up(index);
}
void change(int index,int l,int r,int val){//区间修改;
if(tr[index].l>=l&&tr[index].r<=r){
tr[index].mn += val;
tr[index].sum += val*(tr[index].r-tr[index].l+1);
tr[index].lazy += val;
return;
}
push_down(index);
int mid = (tr[index].l+tr[index].r)>>1;
if(r <= mid) change(index<<1,l,r,val);
else if( l > mid) change(index<<1|1,l,r,val);
else{
change(index<<1,l,mid,val);
change(index<<1|1,mid+1,r,val);
}
push_up(index);
}
void update(int index,int val,int x){//单点修改;
if(tr[index].l == tr[index].r){
tr[index].sum += val;
tr[index].mn += val;
return;
}
int mid = (tr[index].l+tr[index].r)>>1;
if( x <= mid) update(index<<1,val,x);
else update(index<<1|1,val,x);
push_up(index);
}
int ask(int index,int x){//单点查询;
if(tr[index].l==tr[index].r){
return tr[index].mn;
}
push_down(index);
int mid = (tr[index].l+tr[index].r)>>1;
if(x <= mid) return ask(index<<1,x);
else return ask(index<<1|1,x);
}
int query(int index,int l,int r){//区间查询;
if(tr[index].l>=l&&tr[index].r<=r){
return tr[index].mn;//查询区间最小;
}
push_down(index);
int mid = (tr[index].l+tr[index].r)>>1;
if(r<=mid) return query(index<<1,l,r);
else if( l > mid) return query(index<<1|1,l,r);
else{
return min(query(index<<1,l,mid),query(index<<1|1,mid+1,r));//查询区间最小;
}
}
string str;
int n,m;
signed main() {
IO;
cin >> n >> m;
cin >> str;
str = ' ' + str;
int cnt = 0;
rep(i,1,n){
if(str[i] == '(') cnt++;
else cnt--;
a[i] = cnt;
}
build(1,1,n);
while (m--){
int x;
cin >> x;
if(str[x] == '('){
str[x] = ')';
change(1,x,n,-2);
}else{
str[x] = '(';
change(1,x,n,2);
}
if(ask(1,n) == 0 && query(1,1,n) >= 0) cout << "Yes" << '\n';
else cout << "No" << '\n';
}
return 0;
}
京公网安备 11010502036488号