题目描述
windy的生日到了,为了庆祝生日,他的朋友们帮他买了一个边长分别为 X 和 Y 的矩形蛋糕。现在包括windy ,一共有 N 个人来分这块大蛋糕,要求每个人必须获得相同面积的蛋糕。
windy主刀,每一切只能平行于一块蛋糕 的一边(任意一边),并且必须把这块蛋糕切成两块。这样,要切成 N 块蛋糕,windy必须切 N-1 次。
为了使得每块蛋糕看起来漂亮,我们要求 N块蛋糕的长边与短边的比值的最大值最小。你能帮助windy求出这个比值么?
输入描述:
包含三个整数,X Y N。
1 ≤ X,Y ≤ 10000 ; 1 ≤ N ≤ 10
输出描述:
包含一个浮点数,保留6位小数。

示例1
输入
5 5 5
输出
1.800000

解题思路







#pragma GCC target("avx,sse2,sse3,sse4,popcnt")
#pragma GCC optimize("O2,O3,Ofast,inline,unroll-all-loops,-ffast-math")
#include <bits/stdc++.h>
using namespace std;
#define js ios::sync_with_stdio(false);cin.tie(0); cout.tie(0)
#define all(__vv__) (__vv__).begin(), (__vv__).end()
#define endl "\n"
#define pai pair<int, int>
#define mk(__x__,__y__) make_pair(__x__,__y__)
#define ms(__x__,__val__) memset(__x__, __val__, sizeof(__x__))
typedef long long ll; typedef unsigned long long ull; typedef long double ld;
const int MOD = 1e9 + 7;
const int INF = 0x3f3f3f3f;
inline ll read() { ll s = 0, w = 1; char ch = getchar(); for (; !isdigit(ch); ch = getchar()) if (ch == '-') w = -1; for (; isdigit(ch); ch = getchar())    s = (s << 1) + (s << 3) + (ch ^ 48); return s * w; }
inline void print(ll x) { if (!x) { putchar('0'); return; } char F[40]; ll tmp = x > 0 ? x : -x; if (x < 0)putchar('-');    int cnt = 0;    while (tmp > 0) { F[cnt++] = tmp % 10 + '0';        tmp /= 10; }    while (cnt > 0)putchar(F[--cnt]); }
inline ll gcd(ll x, ll y) { return y ? gcd(y, x % y) : x; }
ll qpow(ll a, ll b) { ll ans = 1;    while (b) { if (b & 1)    ans *= a;        b >>= 1;        a *= a; }    return ans; }    ll qpow(ll a, ll b, ll mod) { ll ans = 1; while (b) { if (b & 1)(ans *= a) %= mod; b >>= 1; (a *= a) %= mod; }return ans % mod; }
inline int lowbit(int x) { return x & (-x); }

const int N = 1e5 + 7;

double dfs(double x, double y, int n) {
    if (n == 1)
        return max(x, y) / min(x, y);
    double a = x / n, b = y / n, ans = 1e9;
    for (int i = n >> 1; i; --i) { //枚举全部可能的切割点
        double h = max(dfs(i * a, y, i), dfs(x - i * a, y, n - i)); //横着切
        double w = max(dfs(x, i * b, i), dfs(x, y - i * b, n - i)); //竖着切
        ans = min(ans, min(h, w)); //最大里面最小的
    }
    return ans;
}

int main() {
    double x, y;
    int n;
    cin >> x >> y >> n;
    printf("%.6f\n", dfs(x, y, n));
    return 0;
}