生命不息,学习不止,对一切都要维持敬畏之心。
若有不正之处,请谅解和批评指正,不胜感激。

1.Lambda

1.1 函数式编程思想概述

在数学中,函数就是有输入量、输出量的一套计算方案,也就是“拿什么东西做什么事情”。相对而言,面向对象过分强调“必须通过对象的形式来做事情”,而函数式思想则尽量忽略面向对象的复杂语法——强调做什么,而不是以什么形式做

做什么,而不是怎么做

我们真的希望创建一个匿名内部类对象吗?不。我们只是为了做这件事情而不得不创建一个对象。我们真正希望做的事情是:将run方法体内的代码传递给Thread类知晓。

传递一段代码——这才是我们真正的目的。而创建对象只是受限于面向对象语法而不得不采取的一种手段方式。那,有没有更加简单的办法?如果我们将关注点从“怎么做”回归到“做什么”的本质上,就会发现只要能够更好地达到目的,过程与形式其实并不重要。

1.2 Lambda的优化

当需要启动一个线程去完成任务时,通常会通过java.lang.Runnable接口来定义任务内容,并使用java.lang.Thread类来启动该线程。

传统写法,代码如下:

public class Demo03Thread {
    public static void main(String[] args) {
        new Thread(new Runnable() {
            @Override
            public void run() {
                System.out.println("多线程任务执行!");
            }
        }).start();
    }
}

本着“一切皆对象”的思想,这种做法是无可厚非的:首先创建一个Runnable接口的匿名内部类对象来指定任务内容,再将其交给一个线程来启动。

代码分析:

对于Runnable的匿名内部类用法,可以分析出几点内容:

  • Thread类需要Runnable接口作为参数,其中的抽象run方法是用来指定线程任务内容的核心;
  • 为了指定run的方法体,不得不需要Runnable接口的实现类;
  • 为了省去定义一个RunnableImpl实现类的麻烦,不得不使用匿名内部类;
  • 必须覆盖重写抽象run方法,所以方法名称、方法参数、方法返回值不得不再写一遍,且不能写错;
  • 而实际上,似乎只有方法体才是关键所在

Lambda表达式写法,代码如下:

Lambda是一个匿名函数,可以理解为一段可以传递的代码。

借助Java 8的全新语法,上述Runnable接口的匿名内部类写法可以通过更简单的Lambda表达式达到等效:

public class Demo04LambdaRunnable {
    public static void main(String[] args) {
        new Thread(() -> System.out.println("多线程任务执行!")).start(); // 启动线程
    }
}

这段代码和刚才的执行效果是完全一样的,可以在1.8或更高的编译级别下通过。从代码的语义中可以看出:我们启动了一个线程,而线程任务的内容以一种更加简洁的形式被指定。

Lambda的优点 简化匿名内部类的使用,语法更加简单。

1.3 Lambda的格式

1.3.1标准格式:

Lambda省去面向对象的条条框框,格式由3个部分组成:

  • 一些参数
  • 一个箭头
  • 一段代码

Lambda表达式的标准格式为:

(参数类型 参数名称) -> { 代码语句 }

格式说明:

  • 小括号内的语法与传统方法参数列表一致:无参数则留空;多个参数则用逗号分隔。
  • ->是新引入的语法格式,代表指向动作。
  • 大括号内的语法与传统方法体要求基本一致。

匿名内部类与lambda对比:

new Thread(new Runnable() {
            @Override
            public void run() {
                System.out.println("多线程任务执行!");
            }
}).start();
() -> System.out.println("多线程任务执行!")
  • 前面的一对小括号即run方法的参数(无),代表不需要任何条件;
  • 中间的一个箭头代表将前面的参数传递给后面的代码;
  • 后面的输出语句即业务逻辑代码。

练习无参数无返回值的Lambda

public interface Fly {
    public  abstract  void fly();

}

public class Test {
    public static void main(String[] args) {
        method(new Fly() {
            @Override
            public void fly() {

                System.out.println("飞");
            }
        });

        method(() -> {
            System.out.println("就这样飞了");
        });

    }

    public static  void method(Fly f){
        f.fly();
    }
}

练习有参数有返回值的Lambda
下面举例演示 java.util.Comparator<t>接口的使用场景代码,其中的抽象方法定义为: </t>

  • public abstract int compare(T o1, T o2);

当需要对一个对象集合进行排序时, Collections.sort方法需要一个 Comparator接口实例来指定排序的规则。 传统写法
如果使用传统的代码对 ArrayList集合进行排序,写法如下:

public class Person { 
  private String name; 
  private int age; 
}
public class Test {
    public static void main(String[] args) {
        ArrayList<Person> list = new ArrayList<>();
        list.add(new Person("柳岩", 38));
        list.add(new Person("唐嫣", 18));
        list.add(new Person("金莲", 138));
        list.add(new Person("大郎", 8));

        Collections.sort(list, new Comparator<Person>() {
            @Override
            public int compare(Person o1, Person o2) {
                return o1.getAge() - o2.getAge();
            }
        });

        System.out.println(list);
    }
}

这种做法在面向对象的思想中,似乎也是“理所当然”的。其中 Comparator接口的实例(使用了匿名内部类)代表 了“按照年龄从小到大”的排序规则。

接下来使用Lambda改写:

public class Test {
    public static void main(String[] args) {
        ArrayList<Person> list = new ArrayList<>();
        list.add(new Person("柳岩", 38));
        list.add(new Person("唐嫣", 18));
        list.add(new Person("金莲", 138));
        list.add(new Person("大郎", 8));

//        Collections.sort(list, new Comparator<Person>() {
//            @Override
//            public int compare(Person o1, Person o2) {
//                return o1.getAge() - o2.getAge();
//            }
//        });

        Collections.sort(list,(Person o1,Person o2)->{
            return o1.getAge() - o2.getAge();
        });

        System.out.println(list);
    }
}

1.3.2 省略格式:

省略规则

在Lambda标准格式的基础上,使用省略写法的规则为:

  1. 小括号内参数的类型可以省略;
  2. 如果小括号内有且仅有一个参,则小括号可以省略;
  3. 如果大括号内有且仅有一个语句,则无论是否有返回值,都可以省略大括号、return关键字及语句分号。

备注:掌握这些省略规则后,请对应地回顾本章开头的多线程案例。

Runnable接口简化:
1. () -> System.out.println("多线程任务执行!")
Comparator接口简化:
2. Arrays.sort(array, (a, b) -> a.getAge() - b.getAge());

以后我们调用方法时,看到参数是接口就可以考虑使用Lambda表达式,Lambda表达式相当于是对接口中抽象方法的重写.

1.4 Lambda的前提条件

Lambda的语法非常简洁,完全没有面向对象复杂的束缚。但是使用时有两个问题需要特别注意:

  1. 使用Lambda必须具有接口,且要求接口中有且仅有一个抽象方法
    无论是JDK内置的RunnableComparator接口还是自定义的接口,只有当接口中的抽象方法存在且唯一时,才可以使用Lambda。
  2. 使用Lambda必须具有接口作为方法参数。
    也就是方法的参数或局部变量类型必须为Lambda对应的接口类型,才能使用Lambda作为该接口的实例。

备注:有且仅有一个抽象方法的接口,称为“函数式接口”。

2.函数式接口

2.1 概述

函数式接口在Java中是指:有且仅有一个抽象方法的接口

函数式接口,即适用于函数式编程场景的接口。而Java中的函数式编程体现就是Lambda,所以函数式接口就是可以适用于Lambda使用的接口。只有确保接口中有且仅有一个抽象方法,Java中的Lambda才能顺利地进行推导。

备注:从应用层面来讲,Java中的Lambda可以看做是匿名内部类的简化格式,但是二者在原理上不同。

格式

只要确保接口中有且仅有一个抽象方法即可:

修饰符 interface 接口名称 {
    public abstract 返回值类型 方法名称(可选参数信息);
    // 其他非抽象方法内容
}

由于接口当中抽象方法的public abstract是可以省略的,所以定义一个函数式接口很简单:

public interface MyFunctionalInterface {    
    void myMethod();
}

2.1 FunctionalInterface注解

@Override注解的作用类似,Java 8中专门为函数式接口引入了一个新的注解:@FunctionalInterface。该注解可用于一个接口的定义上:

@FunctionalInterface
public interface MyFunctionalInterface {
    void myMethod();
}

一旦使用该注解来定义接口,编译器将会强制检查该接口是否确实有且仅有一个抽象方法,否则将会报错。不过,即使不使用该注解,只要满足函数式接口的定义,这仍然是一个函数式接口,使用起来都一样。

2.2 常用函数式接口

我们知道使用Lambda表达式的前提是需要有函数式接口。而Lambda使用时不关心接口名,抽象方法名,只关心抽 象方法的参数列表和返回值类型。因此为了让我们使用Lambda方便,JDK提供了大量常用的函数式接口。它们主要在java.util.function包中被提供.

Supplier接口

java.util.function.Supplier<T>接口,它意味着"供给" , 对应的Lambda表达式需要“对外提供”一个符合泛型类型的对象数据。

抽象方法 : get

仅包含一个无参的方法:T get()。用来获取一个泛型参数指定类型的对象数据。

public class Test {
    public static void main(String[] args) {
        //匿名内部类
        Supplier<String>  s = new Supplier<String>() {
            @Override
            public String get() {
                return "abc";
            }
        };

        System.out.println(s.get());
        //lambda
        Supplier<String> s2 = ()->"abc";

        System.out.println(s2.get());

    }
}

求数组元素最大值

使用Supplier接口作为方法参数类型,通过Lambda表达式求出int数组中的最大值。提示:接口的泛型请使用java.lang.Integer类。

代码示例:

public class DemoIntArray {
    public static void main(String[] args) {
        int[] array = { 10, 20, 100, 30, 40, 50 };
        printMax(() -> {
            int max = array[0];
            for (int i = 1; i < array.length; i++) {
                if (array[i] > max) {              
                      max = array[i];
                }
            }
            return max;
        });
    }

    private static void printMax(Supplier<Integer> supplier) {
        int max = supplier.get();
        System.out.println(max);
    }
}

Consumer接口

java.util.function.Consumer<T>接口则正好相反,它不是生产一个数据,而是消费一个数据,其数据类型由泛型参数决定。

抽象方法:accept

Consumer接口中包含抽象方法void accept(T t),意为消费一个指定泛型的数据。基本使用如:

import java.util.function.Consumer;

public class Test {
    public static void main(String[] args) {
        //匿名内部类
        Consumer<Integer> c = new Consumer<Integer>() {
            @Override
            public void accept(Integer integer) {
                System.out.println(integer);
            }
        };
        c.accept(100);

        //lambda
       Consumer<Integer> c2 = (i) -> System.out.println(i);

       c2.accept(200);
    }
}

练习:使用Consumer接口作为方法的参数将一个字符串转换为大写并打印

public class Test {
    public static void main(String[] args) {
        getUpper("world", new Consumer<String>() {
            @Override
            public void accept(String s) {
                System.out.println(s.toUpperCase());
            }
        });

        getUpper("hello",(s)->{
            System.out.println(s.toUpperCase());
        });
    }
    public static  void getUpper(String s ,Consumer<String> consumer){
            consumer.accept(s);
    }
}

默认方法:andThen

如果一个方法的参数和返回值全都是Consumer类型,那么就可以实现效果:消费一个数据的时候,首先做一个操作,然后再做一个操作,实现组合。而这个方法就是Consumer接口中的default方法andThen。下面是JDK的源代码:

default Consumer<T> andThen(Consumer<? super T> after) {
    Objects.requireNonNull(after);
    return (T t) -> { accept(t); after.accept(t); };
}

备注:java.util.ObjectsrequireNonNull静态方法将会在参数为null时主动抛出NullPointerException异常。这省去了重复编写if语句和抛出空指针异常的麻烦。

要想实现组合,需要两个或多个Lambda表达式即可,而andThen的语义正是“一步接一步”操作。例如两个步骤组合的情况:

public class Test {
    public static void main(String[] args) {
        printString("Hello", new Consumer<String>() {
            @Override
            public void accept(String s) {
                System.out.println(s.toUpperCase());
            }
        }, new Consumer<String>() {
            @Override
            public void accept(String s) {
                System.out.println(s.toLowerCase());
            }
        });


       printString("hello",
                s-> System.out.println(s.toUpperCase()),
                s -> System.out.println(s.toLowerCase()));
    }
    public static  void printString(String s ,Consumer<String> consumer,Consumer<String> consumer2){
//            consumer.accept(s);
//            consumer2.accept(s);

        consumer.andThen(consumer2).accept(s);
    }
}

运行结果将会首先打印完全大写的HELLO,然后打印完全小写的hello。当然,通过链式写法可以实现更多步骤的组合。

Function接口

java.util.function.Function<T,R>接口用来根据一个类型的数据得到另一个类型的数据,前者称为前置条件,后者称为后置条件。有进有出,所以称为“函数Function”。

抽象方法:apply

Function接口中最主要的抽象方法为:R apply(T t),根据类型T的参数获取类型R的结果。使用的场景例如:将String类型转换为Integer类型。

public class Test {
    public static void main(String[] args) {

        Function<String,Integer> f = new Function<String, Integer>() {
            @Override
            public Integer apply(String s) {
                return Integer.parseInt(s);
            }
        };

        Integer apply = f.apply("100");
        System.out.println(apply);


        Function<String,Integer> f2 = s -> Integer.parseInt(s);
        System.out.println(f2.apply("200"));

    }

}

练习: 使用Function接口作为方法参数 将一个存储字符串名字的集合,转换为一个存储Person对象的集合

public class Test {
    public static void main(String[] args) {
        List<String>  list = new ArrayList<>();
        list.add("柳岩");
        list.add("唐嫣");
        change(list, new Function<String, Person>() {
            @Override
            public Person apply(String s) {
                return new Person(s);
            }
        });


        change(list,s -> new Person(s));

    }

    public static void  change(List<String> list , Function<String, Person> f){
        List<Person> personList = new ArrayList<>();
        for (String name : list) {
            Person p = f.apply(name);
            personList.add(p);
        }

        System.out.println(personList);
    }

}

默认方法:andThen

Function接口中有一个默认的andThen方法,用来进行组合操作。JDK源代码如:

default <V> Function<T, V> andThen(Function<? super R, ? extends V> after) {
    Objects.requireNonNull(after);
    return (T t) -> after.apply(apply(t));
}

该方法同样用于“先做什么,再做什么”的场景,和Consumer中的andThen差不多:

public class Test {
    public static void main(String[] args) {

        method("10",s -> {
            return Integer.parseInt(s);
        },s->{
            return s*=10;
        });

    }
    //将字符串转为 int 在扩大10倍
    private static void method( String str,Function<String, Integer> one, Function<Integer, Integer> two) {
//        Integer i = one.apply(str);
//        Integer num = two.apply(i);
//        System.out.println(num);

        Integer num = one.andThen(two).apply(str);
        System.out.println(num);

    }

}

第一个操作是将字符串解析成为int数字,第二个操作是乘以10。两个操作通过andThen按照前后顺序组合到了一起。

请注意,Function的前置条件泛型和后置条件泛型可以相同。

Predicate接口

有时候我们需要对某种类型的数据进行判断,从而得到一个boolean值结果。这时可以使用java.util.function.Predicate<T>接口。

抽象方法:test

Predicate接口中包含一个抽象方法:boolean test(T t)。用于条件判断的场景:

public class Test {
    public static void main(String[] args) {
        Predicate<String> p = new Predicate<String>() {
            @Override
            public boolean test(String s) {
                return s.endsWith(".java");
            }
        };

        System.out.println(p.test("abc.java"));

        Predicate<String> p2 = s -> s.endsWith(".java");

        System.out.println(p2.test("aaa.java"));
    }

}

练习:使用Predicate作为方法参数 判断一个字符串是否很长 如果长度大于5则为true 小于5则为false

public class Test {
    public static void main(String[] args) {

       isLong("aaa", new Predicate<String>() {
           @Override
           public boolean test(String s) {

               return  s.length()>=5;
           }
       });

       isLong("bbbaa",s -> s.length()>=5);
    }

    public static void isLong(String s , Predicate<String> p){
        boolean test = p.test(s);
        System.out.println(test);
    }

}

默认方法:and

既然是条件判断,就会存在与、或、非三种常见的逻辑关系。其中将两个Predicate条件使用“与”逻辑连接起来实现“并且”的效果时,可以使用default方法and。其JDK源码为:

default Predicate<T> and(Predicate<? super T> other) {
    Objects.requireNonNull(other);
    return (t) -> test(t) && other.test(t);
}

如果要判断一个字符串既要包含大写“H”,又要包含大写“W”,那么:

public class Test {

    public static void main(String[] args) {
        method("Helloworld" ,s -> s.contains("H"), s -> s.contains("W"));
    }
    private static void method(String str ,Predicate<String> one, Predicate<String> two) {
        boolean b1 = one.test(str);
        boolean b2 = two.test(str);
        System.out.println("字符串符合要求吗:" + (b1 && b2));


        boolean isValid = one.and(two).test(str);
        System.out.println("字符串符合要求吗:" + isValid);
    }

}

默认方法:or

and的“与”类似,默认方法or实现逻辑关系中的“”。JDK源码为:

default Predicate<T> or(Predicate<? super T> other) {
    Objects.requireNonNull(other);
    return (t) -> test(t) || other.test(t);
}

如果希望实现逻辑“字符串包含大写H或者包含大写W”,那么代码只需要将“and”修改为“or”名称即可,其他都不变:

public class Test {

    public static void main(String[] args) {
        method("Helloworld" ,s -> s.contains("H"), s -> s.contains("W"));
    }
    private static void method(String str ,Predicate<String> one, Predicate<String> two) {
        boolean b1 = one.test(str);
        boolean b2 = two.test(str);
        System.out.println("字符串符合要求吗:" + (b1 || b2));


        boolean isValid = one.and(two).test(str);
        System.out.println("字符串符合要求吗:" + isValid);
    }

}

默认方法:negate

“与”、“或”已经了解了,剩下的“非”(取反)也会简单。默认方法negate的JDK源代码为:

default Predicate<T> negate() {
    return (t) -> !test(t);
}

从实现中很容易看出,它是执行了test方法之后,对结果boolean值进行“!”取反而已。一定要在test方法调用之前调用negate方法,正如andor方法一样:

public class Test {
    public static void main(String[] args) {

       isLong("aaa", new Predicate<String>() {
           @Override
           public boolean test(String s) {

               return  s.length()<5;
           }
       });

       isLong("bbbaa",s -> s.length()>=5);
    }

    public static void isLong(String s , Predicate<String> p){
        boolean test = p.test(s);
        System.out.println(!test);
        boolean b2 =  p.negate().test(s);
        System.out.println(b2);
    }

}

3.Stream流

在Java 8中,得益于Lambda所带来的函数式编程,引入了一个全新的Stream概念,用于解决已有集合类库既有的弊端。

4.1 引言

传统集合的多步遍历代码

几乎所有的集合(如Collection接口或Map接口等)都支持直接或间接的遍历操作。而当我们需要对集合中的元素进行操作的时候,除了必需的添加、删除、获取外,最典型的就是集合遍历。例如:

public class Demo10ForEach {
    public static void main(String[] args) {
        List<String> list = new ArrayList<>();
        list.add("张无忌");
        list.add("周芷若");
        list.add("赵敏");
        list.add("张强");
        list.add("张三丰");
        for (String name : list) {
              System.out.println(name);
        }
    }  
}

这是一段非常简单的集合遍历操作:对集合中的每一个字符串都进行打印输出操作。

循环遍历的弊端

Java 8的Lambda让我们可以更加专注于做什么(What),而不是怎么做(How),这点此前已经结合内部类进行了对比说明。现在,我们仔细体会一下上例代码,可以发现:

  • for循环的语法就是“怎么做
  • for循环的循环体才是“做什么

为什么使用循环?因为要进行遍历。但循环是遍历的唯一方式吗?遍历是指每一个元素逐一进行处理,而并不是从第一个到最后一个顺次处理的循环。前者是目的,后者是方式。

试想一下,如果希望对集合中的元素进行筛选过滤:

  1. 将集合A根据条件一过滤为子集B
  2. 然后再根据条件二过滤为子集C

那怎么办?在Java 8之前的做法可能为:

这段代码中含有三个循环,每一个作用不同:

  1. 首先筛选所有姓张的人;
  2. 然后筛选名字有三个字的人;
  3. 最后进行对结果进行打印输出。
public class Demo11NormalFilter {
      public static void main(String[] args) {
          List<String> list = new ArrayList<>();
        list.add("张无忌");
        list.add("周芷若");
        list.add("赵敏");
        list.add("张强");
        list.add("张三丰");

        List<String> zhangList = new ArrayList<>();
        for (String name : list) {
            if (name.startsWith("张")) {
                  zhangList.add(name);
            }
        }

        List<String> shortList = new ArrayList<>();
        for (String name : zhangList) {
            if (name.length() == 3) {
                  shortList.add(name);
            }
        }

        for (String name : shortList) {
              System.out.println(name);
        }
    }
}

每当我们需要对集合中的元素进行操作的时候,总是需要进行循环、循环、再循环。这是理所当然的么?不是。循环是做事情的方式,而不是目的。另一方面,使用线性循环就意味着只能遍历一次。如果希望再次遍历,只能再使用另一个循环从头开始。

那,Lambda的衍生物Stream能给我们带来怎样更加优雅的写法呢?

Stream的更优写法

下面来看一下借助Java 8的Stream API,什么才叫优雅:

public class Demo12StreamFilter {
    public static void main(String[] args) {
        List<String> list = new ArrayList<>();
        list.add("张无忌");
        list.add("周芷若");
        list.add("赵敏");
        list.add("张强");
        list.add("张三丰");

        list.stream()
              .filter(s -> s.startsWith("张"))
            .filter(s -> s.length() == 3)
            .forEach(s -> System.out.println(s));
    }
}

直接阅读代码的字面意思即可完美展示无关逻辑方式的语义:获取流、过滤姓张、过滤长度为3、逐一打印。代码中并没有体现使用线性循环或是其他任何算法进行遍历,我们真正要做的事情内容被更好地体现在代码中。

4.2 流式思想概述

注意:Stream和IO流(InputStream/OutputStream)没有任何关系,请暂时忘记对传统IO流的固有印象

Stream流式思想类似于工厂车间的“生产流水线”,Stream流不是一种数据结构,不保存数据,而是对数据进行加工 处理。Stream可以看作是流水线上的一个工序。在流水线上,通过多个工序让一个原材料加工成一个商品。

当需要对多个元素进行操作(特别是多步操作)的时候,考虑到性能及便利性,我们应该首先拼好一个“模型”步骤方案,然后再按照方案去执行它。

Stream API能让我们快速完成许多复杂的操作,如筛选、切片、映射、查找、去除重复,统计,匹配和归约。Stream是流式思想,相当于工厂的流水线,对集合中的数据进行加工处理

4.3 获取流方式

java.util.stream.Stream<T>是Java 8新加入的最常用的流接口。(这并不是一个函数式接口。)

获取一个流非常简单,有以下几种常用的方式:

  • 所有的Collection集合都可以通过stream默认方法获取流;
  • Stream接口的静态方法of可以获取数组对应的流。

方式1 : 根据Collection获取流

首先,java.util.Collection接口中加入了default方法stream用来获取流,所以其所有实现类均可获取流。

import java.util.*;
import java.util.stream.Stream;
/*
    获取Stream流的方式

    1.Collection中 方法
        Stream stream()
    2.Stream接口 中静态方法
        of(T...t) 向Stream中添加多个数据
 */
public class Demo13GetStream {
    public static void main(String[] args) {
        List<String> list = new ArrayList<>();
        // ...
        Stream<String> stream1 = list.stream();

        Set<String> set = new HashSet<>();
        // ...
        Stream<String> stream2 = set.stream();
    }
}

方式2: 根据数组获取流

如果使用的不是集合或映射而是数组,由于数组对象不可能添加默认方法,所以Stream接口中提供了静态方法of,使用很简单:

import java.util.stream.Stream;

public class Demo14GetStream {
    public static void main(String[] args) {
        String[] array = { "张无忌", "张翠山", "张三丰", "张一元" };
        Stream<String> stream = Stream.of(array);
    }
}

备注:of方法的参数其实是一个可变参数,所以支持数组。

4.4 常用方法

流模型的操作很丰富,这里介绍一些常用的API。这些方法可以被分成两种:

  • 终结方法:返回值类型不再是Stream接口自身类型的方法,因此不再支持类似StringBuilder那样的链式调用。本小节中,终结方法包括countforEach方法。
  • 非终结方法:返回值类型仍然是Stream接口自身类型的方法,因此支持链式调用。(除了终结方法外,其余方法均为非终结方法。)

备注:本小节之外的更多方法,请自行参考API文档。

forEach : 逐一处理

虽然方法名字叫forEach,但是与for循环中的“for-each”昵称不同,该方法并不保证元素的逐一消费动作在流中是被有序执行的

void forEach(Consumer<? super T> action);

该方法接收一个Consumer接口函数,会将每一个流元素交给该函数进行处理。例如:

import java.util.stream.Stream;

public class Demo15StreamForEach {
    public static void main(String[] args) {
        Stream<String> stream =  Stream.of("大娃","二娃","三娃","四娃","五娃","六娃","七娃","爷爷","蛇精","蝎子精");
        //Stream<String> stream = Stream.of("张无忌", "张三丰", "周芷若");
        stream.forEach((String str)->{System.out.println(str);});
    }
}

在这里,lambda表达式(String str)->{System.out.println(str);}就是一个Consumer函数式接口的示例。

filter:过滤

可以通过filter方法将一个流转换成另一个子集流。方法声明:

Stream<T> filter(Predicate<? super T> predicate);

该接口接收一个Predicate函数式接口参数(可以是一个Lambda)作为筛选条件。

基本使用**

Stream流中的filter方法基本使用的代码如:

public class Demo16StreamFilter {
    public static void main(String[] args) {
        Stream<String> original = Stream.of("张无忌", "张三丰", "周芷若");
        Stream<String> result = original.filter((String s) -> {return s.startsWith("张");});
    }
}

在这里通过Lambda表达式来指定了筛选的条件:必须姓张。

count:统计个数

正如旧集合Collection当中的size方法一样,流提供count方法来数一数其中的元素个数:

long count();

该方法返回一个long值代表元素个数(不再像旧集合那样是int值)。基本使用:

public class Demo17StreamCount {
    public static void main(String[] args) {
        Stream<String> original = Stream.of("张无忌", "张三丰", "周芷若");
        Stream<String> result = original.filter(s -> s.startsWith("张"));
        System.out.println(result.count()); // 2
    }
}

limit:取用前几个limit方法可以对流进行截取,只取用前n个。方法签名:

Stream<T> limit(long maxSize):获取Stream流对象中的前n个元素,返回一个新的Stream流对象

参数是一个long型,如果集合当前长度大于参数则进行截取;否则不进行操作。

基本使用:

import java.util.stream.Stream;

public class Demo18StreamLimit {
    public static void main(String[] args) {
        Stream<String> original = Stream.of("张无忌", "张三丰", "周芷若");
        Stream<String> result = original.limit(2);
        System.out.println(result.count()); // 2
    }
}

skip:跳过前几个

如果希望跳过前几个元素,可以使用skip方法获取一个截取之后的新流:

Stream<T> skip(long n): 跳过Stream流对象中的前n个元素,返回一个新的Stream流对象

如果流的当前长度大于n,则跳过前n个;否则将会得到一个长度为0的空流。

基本使用:

import java.util.stream.Stream;

public class Demo19StreamSkip {
    public static void main(String[] args) {
        Stream<String> original = Stream.of("张无忌", "张三丰", "周芷若");
        Stream<String> result = original.skip(2);
        System.out.println(result.count()); // 1
    }
}

concat:组合

如果有两个流,希望合并成为一个流,那么可以使用Stream接口的静态方法concat

static <T> Stream<T> concat(Stream<? extends T> a, Stream<? extends T> b): 把参数列表中的两个Stream流对象a和b,合并成一个新的Stream流对象

备注:这是一个静态方法,与java.lang.String当中的concat方法是不同的。

该方法的基本使用代码如:

import java.util.stream.Stream;

public class Demo20StreamConcat {
    public static void main(String[] args) {
        Stream<String> streamA = Stream.of("张无忌");
        Stream<String> streamB = Stream.of("张翠山");
        Stream<String> result = Stream.concat(streamA, streamB);
    }
}

distinct:去重

如果需要去除重复数据,可以使用 distinct方法。方法签名:

Stream<T> distinct()

基本使用:

public class Test {
    public static void main(String[] args) {
      Stream.of(22, 33, 22, 11, 33)
                .distinct()
                .forEach(s-> System.out.println(s));

    }
}

map:映射

如果需要将流中的元素映射到另一个流中,可以使用 map方法。方法签名:

<R> Stream<R> map(Function<? super T, ? extends R> mapper);

该接口需要一个 Function函数式接口参数,可以将当前流中的T类型数据转换为另一种R类型的流。

基本使用:

public class Test {
    public static void main(String[] args) {
        Stream<String> original = Stream.of("11", "22", "33");
        Stream<Integer> result = original.map(Integer::parseInt);
        result.forEach(s -> System.out.println(s + 10));

    }
}

4.5 Stream综合案例

现在有两个ArrayList集合存储队伍当中的多个成员姓名,要求使用传统的for循环(或增强for循环)依次进行以下若干操作步骤:

  1. 第一个队伍只要名字为3个字的成员姓名;
  2. 第一个队伍筛选之后只要前3个人;
  3. 第二个队伍只要姓张的成员姓名;
  4. 第二个队伍筛选之后不要前2个人;
  5. 将两个队伍合并为一个队伍;
  6. 打印整个队伍的姓名信息。

两个队伍(集合)的代码如下:

public class Demo21ArrayListNames {
    public static void main(String[] args) {
        List<String> one = new ArrayList<>();
        one.add("迪丽热巴");
        one.add("宋远桥");
        one.add("苏星河");
        one.add("老子");
        one.add("庄子");
        one.add("孙子");
        one.add("洪七公");

        List<String> two = new ArrayList<>();
        two.add("古力娜扎");
        two.add("张无忌");
        two.add("张三丰");
        two.add("赵丽颖");
        two.add("张二狗");
        two.add("张天爱");
        two.add("张三");
        // ....
    }
}

传统方式

使用for循环 , 示例代码:

public class Demo22ArrayListNames {
    public static void main(String[] args) {
        List<String> one = new ArrayList<>();
        // ...

        List<String> two = new ArrayList<>();
        // ...

        // 第一个队伍只要名字为3个字的成员姓名;
        List<String> oneA = new ArrayList<>();
        for (String name : one) {
            if (name.length() == 3) {
                oneA.add(name);
            }
        }

        // 第一个队伍筛选之后只要前3个人;
        List<String> oneB = new ArrayList<>();
        for (int i = 0; i < 3; i++) {
            oneB.add(oneA.get(i));
        }

        // 第二个队伍只要姓张的成员姓名;
        List<String> twoA = new ArrayList<>();
        for (String name : two) {
            if (name.startsWith("张")) {
                twoA.add(name);
            }
        }

        // 第二个队伍筛选之后不要前2个人;
        List<String> twoB = new ArrayList<>();
        for (int i = 2; i < twoA.size(); i++) {
            twoB.add(twoA.get(i));
        }

        // 将两个队伍合并为一个队伍;
        List<String> totalNames = new ArrayList<>();
        totalNames.addAll(oneB);
        totalNames.addAll(twoB);        

        // 打印整个队伍的姓名信息。
        for (String name : totalNames) {
            System.out.println(name);
        }
    }
}

运行结果为:

宋远桥
苏星河
洪七公
张二狗
张天爱
张三

Stream方式

等效的Stream流式处理代码为:

public class Demo23StreamNames {
    public static void main(String[] args) {
        List<String> one = new ArrayList<>();
        // ...

        List<String> two = new ArrayList<>();
        // ...

        // 第一个队伍只要名字为3个字的成员姓名;
        // 第一个队伍筛选之后只要前3个人;
        Stream<String> streamOne = one.stream().filter(s -> s.length() == 3).limit(3);

        // 第二个队伍只要姓张的成员姓名;
        // 第二个队伍筛选之后不要前2个人;
        Stream<String> streamTwo = two.stream().filter(s -> s.startsWith("张")).skip(2);

        // 将两个队伍合并为一个队伍;
        // 根据姓名创建Person对象;
        // 打印整个队伍的Person对象信息。
        Stream.concat(streamOne, streamTwo).forEach(s->System.out.println(s));
    }
}

运行效果完全一样:

宋远桥
苏星河
洪七公
张二狗
张天爱
张三

4.6 函数拼接与终结方法[了解]

在上述介绍的各种方法中,凡是返回值仍然为Stream接口的为函数拼接方法,它们支持链式调用;而返回值不再为Stream接口的为终结方法,不再支持链式调用。如下表所示:

方法名 方法作用 方法种类 是否支持链式调用
count 统计个数 终结
forEach 逐一处理 终结
filter 过滤 函数拼接
limit 取用前几个 函数拼接
skip 跳过前几个 函数拼接
concat 组合 函数拼接

4.7 Stream流中的结果到集合中

Stream流提供 collect方法,其参数需要一个 java.util.stream.Collector<T,A, R>接口对象来指定收集到哪 种集合中。java.util.stream.Collectors 类提供一些方法,可以作为 Collector`接口的实例:

  • public static <t> Collector<T, ?, List<t>> toList():转换为 List集合。 </t></t>
  • public static <t> Collector<T, ?, Set<t>> toSet():转换为 Set集合。 </t></t>

下面是这两个方法的基本使用代码

public class Test {

    public static void main(String[] args) {
        Stream<String> stream = Stream.of("aa", "bb", "cc");
        //转换为list集合
        List<String> list = stream.collect(Collectors.toList());
        //转换为set集合
        Set<String> set = stream.collect(Collectors.toSet());
        //转换为ArrayList集合
        ArrayList<String> arrayList = stream.collect(Collectors.toCollection(ArrayList::new));
        //转换为HashSet集合
        HashSet<String> hashSet = stream.collect(Collectors.toCollection(HashSet::new));
    }

}

4.8 Stream流中的结果到数组中

Stream提供 toArray方法来将结果放到一个数组中,返回值类型是Object[]的:

Object[] toArray();

其使用场景如:

public class Test {
    public static void main(String[] args) {
        Stream<String> stream = Stream.of("aa", "bb", "cc");

        Object[] objects = stream.toArray();
        System.out.println(Arrays.toString(objects));

        String[] strings = stream.toArray(String[]::new);
        System.out.println(Arrays.toString(strings));
    }
}