java中HashMap原理

内推军P21 P22

1、为什么用HashMap

HashMap是一个散列桶(数组和链表),它存储的内容是键值对(key-value)映射HashMap采用了数组和链表的数据结构,能在查询和修改方便继承了数组的线性查找和链表的寻址修改HashMap是非synchronized,所以HashMap很快HashMap可以接受null键和值,而Hashtable则不能(原因就是equlas()方法需要对象,因为HashMap是后出的API经过处理才可以)

2、HashMap的工作原理是什么?

HashMap是基于hashing的原理,我们使用put(key, value)存储对象到HashMap中,使用get(key)从HashMap中获取对象。当我们给put()方法传递键和值时,我们先对键调用hashCode()方法,计算并返回的hashCode是用于找到Map数组的bucket位置来储存Node 对象。这里关键点在于指出,HashMap是在bucket中储存键对象和值对象,作为Map.Node 。

put过程(JDK1.8版)

1、对KeyHash值,然后再计算下标

2、如果没有碰撞,直接放入桶中(碰撞的意思是计算得到的Hash值相同,需要放到同一个bucket中)

3、如果碰撞了,以链表的方式链接到后面

4、如果链表长度超过阀值( TREEIFY THRESHOLD==8),就把链表转成红黑树,链表长度低于6,就把红黑树转回链表

5、如果节点已经存在就替换旧值

6、如果桶满了(容量16*加载因子0.75),就需要 resize(扩容2倍后重排)

get过程(考虑特殊情况如果两个键的hashcode相同,你如何获取值对象?)

当我们调用get()方法,HashMap会使用键对象的hashcode找到bucket位置,找到bucket位置之后,会调用keys.equals()方法去找到链表中正确的节点,最终找到要找的值对象。

3有什么方法可以减少碰撞?

扰动函数可以减少碰撞,原理是如果两个不相等的对象返回不同的hashcode的话,那么碰撞的几率就会小些,这就意味着存链表结构减小,这样取值的话就不会频繁调用equal方法,这样就能提高HashMap的性能。(扰动即Hash方法内部的算法实现,目的是让不同对象返回不同hashcode。)

使用不可变的、声明作final的对象,并且采用合适的equals()和hashCode()方法的话,将会减少碰撞的发生。不可变性使得能够缓存不同键的hashcode,这将提高整个获取对象的速度,使用String,Interger这样的wrapper类作为键是非常好的选择。为什么String, Interger这样的wrapper类适合作为键?因为String是final的,而且已经重写了equals()和hashCode()方法了。不可变性是必要的,因为为了要计算hashCode(),就要防止键值改变,如果键值在放入时和获取时返回不同的hashcode的话,那么就不能从HashMap中找到你想要的对象。

4 HashMap中hash函数怎么是是实现的?

我们可以看到在hashmap中要找到某个元素,需要根据keyhash值来求得对应数组中的位置。如何计算这个位置就是hash算法。前面说过hashmap的数据结构是数组和链表的结合,所以我们当然希望这个hashmap里面的元素位置尽量的分布均匀些,尽量使得每个位置上的元素数量只有一个,那么当我们用hash算法求得这个位置的时候,马上就可以知道对应位置的元素就是我们要的,而不用再去遍历链表。 所以我们首先想到的就是把hashcode对数组长度取模运算,这样一来,元素的分布相对来说是比较均匀的。但是,运算的消耗还是比较大的,能不能找一种更快速,消耗更小的方式,我们来看看JDK1.8的源码是怎么做的

1 static final int hash(Object key) {if (key == null){ return 0; } int h; h=key.hashCode();返回散列值也就是hashcode

2 ^ :按位异或 // >>>:无符号右移,忽略符号位,空位都以0补齐

3其中n是数组的长度,即Map的数组部分初始化长度 return (n-1)&(h ^ (h >>> 16));

简单来说就是

1、高16bt不变,低16bit和高16bit做了一个异或(得到的HASHCODE转化为32位的二进制,前16位和后16位低16bit和高16bit做了一个异或)

2(n·1)&hash=->得到下标

5 拉链法导致的链表过深问题为什么不用二叉查找树代替,而选择红黑树?为什么不一直使用红黑树?

之所以选择红黑树是为了解决二叉查找树的缺陷,二叉查找树在特殊情况下会变成一条线性结构(这就跟原来使用链表结构一样了,造成很深的问题),遍历查找会非常慢。而红黑树在插入新数据后可能需要通过左旋,右旋、变色这些操作来保持平衡,引入红黑树就是为了查找数据快,解决链表查询深度的问题,我们知道红黑树属于平衡二叉树,但是为了保持“平衡”是需要付出代价的,但是该代价所损耗的资源要比遍历线性链表要少,所以当长度大于8的时候,会使用红黑树,如果链表长度很短的话,根本不需要引入红黑树,引入反而会慢。

6解决hash 碰撞还有那些办法?

开放定址法。

当冲突发生时,使用某种探查技术在散列表中形成一个探查()序列。沿此序列逐个单元地查找,直到找到给定的地址。

按照形成探查序列的方法不同,可将开放定址法区分为线性探查法、二次探查法、双重散列法等。

问题:已知一组关键字为(26,36,41,38,44,15,68,12,06,51),用除余法构造散列函数,用线性探查法解决冲突构造这组关键字的散列表。

解答:为了减少冲突,通常令装填因子α由除余法因子是13的散列函数计算出的上述关键字序列的散列地址为(0,10,2,12,5,2,3,12,6,12)。

前5个关键字插入时,其相应的地址均为开放地址,故将它们直接插入T[0],T[10),T[2],T[12]和T[5]中。

当插入第6个关键字15时,其散列地址2(即h(15)=15%13=2)已被关键字41(15和41互为同义词)占用。故探查h1=(2+1)%13=3,此地址开放,所以将15放入T[3]中。

当插入第7个关键字68时,其散列地址3已被非同义词15先占用,故将其插入到T[4]中。

当插入第8个关键字12时,散列地址12已被同义词38占用,故探查hl=(12+1)%13=0,而T[0]亦被26占用,再探查h2=(12+2)%13=1,此地址开放,可将12插入其中。

类似地,第9个关键字06直接插入T[6]中;而最后一个关键字51插人时,因探查的地址12,0,1,…,6均非空,故51插入T[7]中。

7 如果HashMap的大小超过了负载因子(load factor)定义的容量,怎么办?

默认的负载因子大小为0.75,也就是说,当一个map填满了75%bucket时候,和其它集合类(ArrayList)一样,将会创建原来HashMap大小的两倍的bucket数组,来重新调整map的大小,并将原来的对象放入新的bucket数组中。这个过程叫作rehashing,因为它调用hash方法找到新的bucket位置。这个值只可能在两个地方,一个是原下标的位置,另一种是在下标为<原下标+原容量>的位置

8 重新调整HashMap大小存在什么问题吗?

当重新调整HashMap大小的时候,确实存在条件竞争,因为如果两个线程都发现HashMap需要重新调整大小了,它们会同时试着调整大小。在调整大小的过程中,存储在链表中的元素的次序会反过来,因为移动到新的bucket位置的时候,HashMap并不会将元素放在链表的尾部,而是放在头部,这是为了避免尾部遍历(tail traversing)。如果条件竞争发生了,那么就死循环了。(多线程的环境下不使用HashMap)

为什么多线程会导致死循环,它是怎么发生的?

HashMap的容量是有限的。当经过多次元素插入,使得HashMap达到一定饱和度时,Key映射位置发生冲突的几率会逐渐提高。这时候,HashMap需要扩展它的长度,也就是进行Resize1.扩容:创建一个新的Entry空数组,长度是原数组的2倍。2.ReHash:遍历原Entry数组,把所有的Entry重新Hash到新数组。

图示

1 正常的ReHash的过程

我假设了我们的hash算法就是简单的用key mod 一下表的大小(也就是数组的长度)。

最上面的是old hash 表,其中的Hash表的size=2, 所以key = 3, 7, 5,在mod 2以后都冲突在table[1]这里了。

接下来的三个步骤是Hash表 resize成4,然后所有的<key,value> 重新rehash的过程

2 并发下的Rehash

1)假设我们有两个线程。我用红色和浅蓝色标注了一下。

我们再回头看一下我们的 transfer代码中的这个细节:
do {
    Entry<K,V> next = e.next; // <--假设线程一执行到这里就被调度挂起了
    int i = indexFor(e.hash, newCapacity);
    e.next = newTable[i];
    newTable[i] = e;
    e = next;
} while (e != null);
而我们的线程二执行完成了。于是我们有下面的这个样子。

注意,因为Thread1的 e 指向了key(3),而next指向了key(7),其在线程二rehash后,指向了线程二重组后的链表。我们可以看到链表的顺序被反转后。

2)线程一被调度回来执行。

先是执行 newTalbe[i] = e;

然后是e = next,导致了e指向了key(7),

而下一次循环的next = e.next导致了next指向了key(3)

3)一切安好。

线程一接着工作。把key(7)摘下来,放到newTable[i]的第一个,然后把e和next往下移。

4)环形链接出现。

e.next = newTable[i] 导致  key(3).next 指向了 key(7)

注意:此时的key(7).next 已经指向了key(3), 环形链表就这样出现了。

 

于是,当我们的线程一调用到,HashTable.get(11)时,悲剧就出现了——Infinite Loop。

9 HashMap的rehash源代码

1 Put一个Key,Value对到Hash表中:

public V put(K key, V value)
{
    ......
    //算Hash值
    int hash = hash(key.hashCode());
    int i = indexFor(hash, table.length);
    //如果该key已被插入,则替换掉旧的value (链接操作)
    for (Entry<K,V> e = table[i]; e != null; e = e.next) {
        Object k;
        if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
            V oldValue = e.value;
            e.value = value;
            e.recordAccess(this);
            return oldValue;
        }
    }
    modCount++;
    //该key不存在,需要增加一个结点
    addEntry(hash, key, value, i);
    return null;
}

2 检查容量是否超标

void addEntry(int hash, K key, V value, int bucketIndex)
{
    Entry<K,V> e = table[bucketIndex];
    table[bucketIndex] = new Entry<K,V>(hash, key, value, e);
    //查看当前的size是否超过了我们设定的阈值threshold,如果超过,需要resize
    if (size++ >= threshold)
        resize(2 * table.length);
}

3新建一个更大尺寸的hash表,然后把数据从老的Hash表中迁移到新的Hash表中。

void resize(int newCapacity)
{
    Entry[] oldTable = table;
    int oldCapacity = oldTable.length;
    ......
    //创建一个新的Hash Table
    Entry[] newTable = new Entry[newCapacity];
    //将Old Hash Table上的数据迁移到New Hash Table上
    transfer(newTable);
    table = newTable;
    threshold = (int)(newCapacity * loadFactor);
}

4 迁移的源代码,注意高亮处:

void transfer(Entry[] newTable)
{
    Entry[] src = table;
    int newCapacity = newTable.length;
    //下面这段代码的意思是:
    //  从OldTable里摘一个元素出来,然后放到NewTable中
    for (int j = 0; j < src.length; j++) {
        Entry<K,V> e = src[j];
        if (e != null) {
            src[j] = null;
            do {
                Entry<K,V> next = e.next;
                int i = indexFor(e.hash, newCapacity);
                e.next = newTable[i];
                newTable[i] = e;
                e = next;
            } while (e != null);
        }
    }
}

5 如何选择线程安全的容器?

Java编码中,我们经常需要用到容器来编程。在并发环境下,Java提供一些已有容器能够支持并发。

1.Map

在Map类中,提供两种线程安全容器。

java.util.Hashtable
Hashtable和HashMap类似,都是散列表,存储键值对映射。主要区别在于Hashtable是线程安全的。当我们查看Hashtable源码的时候,可以看到Hashtable的方法都是通过synchronized来进行方法层次的同步,以达到线程安全的作用。

java.util.concurrent.ConcurrentHashMap
ConcurrentHashMap是性能更好的散列表。在兼顾线程安全的同时,相对于Hashtable,在效率上有很大的提高。我们可以猜想,Hashtable的线程安全实现是对方法进行synchronized,很明显可以通过其他并发方式,如ReentrantLock进行优化。而ConcurrentHashMap正是采用了ReentrantLock。运用锁分离技术,即在代码块上加锁,而不是方法上加。同时ConcurrentHashMap的一个特色是允许多个修改并发操作。这就有意思了,我们知道一般写都是互斥的,为什么这个还能多个同时写呢?那是因为ConcurrentHashMap采用了内部使用段机制,将ConcurrentHashMap分成了很多小段。只要不在一个小段上写就可以并发写。
具体看内推军P22

2 Collection

Collection部分主要是运用的CopyOnWrite机制,即写时复制机制。从字面上就能理解什么意思,就是当我们往一个容器里添加元素的时候,先对这个容器进行一次复制,对副本进行写操作。写操作结束后,将原容器的引用指向新副本容器,就完成了写的刷新。

从它的实现原理,我们可以看出这种机制是存在缺点的。

1.内存占用:毫无疑问,每次写时需要首先复制一遍原容器,假如复制了很多,或者本身原容器就比较大,那么肯定会占用很多内存。可以采用压缩容器中的元素来防止内存消耗过大。

2.数据一致性问题:当我们在副本中进行写操组时,只能在最终结束后使数据同步,不能实时同步

可以看到,这种机制适用于读操作多,写操作少的应用场景。

java.util.concurrent.CopyOnWriteArrayList

Collection类的线程安全容器主要都是利用的ReentrantLock实现的线程安全,CopyOnWriteArrayList也不例外。在并发写的时候,需要获取lock。读的时候不需要进行lock

java.util.concurrent.CopyOnWriteArraySet

CopyOnWriteArraySet的实现就是基于CopyOnWriteArrayList实现的,采用的装饰器进行实现。二者的区别和List和Set的区别一样。

Vector

一般我们都不用Vector了,不过它确实也是线程安全的。相对于其他容器,能够提供随机访问功能。
 

StringBuffer和StringBuilder


我们知道,String在进行+操作的时候,原生的String会重新新建一个String对象来完成字符串拼接,明显这种操作多了的话会加重服务器负担。因此我们需要的时候就会用StringBuffer和StringBuilder。这二者有什么区别呢?

StringBuffer是线程安全的,StringBuilder不是。从StringBuffer的源码可以看到,它采用的是对方法进行synchronized实现的同步。但是加了同步机制,肯定会对性能有一定影响。