链接:http://poj.org/problem?id=1006
思路:
中国剩余定理水题
贴一个中国剩余定理:
逆元不能用快速幂,而要用exgcd来求,之前没有注意,快速幂求逆元是费马小定理要求模数是质数的时候才可以。
代码:
#include <iostream> #include <stdio.h> #include <string.h> #include <stack> #include <queue> #include <map> #include <set> #include <vector> #include <math.h> #include <bitset> #include <algorithm> #include <climits> using namespace std; typedef long long ll; ll exgcd(ll a, ll b, ll &x, ll &y) { if(b == 0) {x = 1; y = 0; return a;} ll d = exgcd(b, a%b, y, x); y = y - a/b * x; return d; } ll china(int n, ll *m, ll *a) { ll M = 1, res = 0; for(int i = 0; i < n; i++) M*=m[i]; for(int i = 0; i < n; i++) { ll w = M/m[i]; ll x, y; exgcd(w, m[i], x, y); x = (x%m[i] + m[i]) % m[i]; res = (res + a[i]*x*w % M) % M; } return res; } ll m[5], a[5]; int main() { int cnt = 0, d; m[0] = 23, m[1] = 28, m[2] = 33; while(cin >> a[0] >> a[1] >> a[2] >> d) { if(a[0] == -1 && a[1] == -1 && a[2] == -1 && d == -1) break; ll ans = (china(3, m, a) - d + 21252) % 21252; if(ans == 0) ans = 21252; printf("Case %d: the next triple peak occurs in %lld days.\n",++cnt, ans); } }