排序不等式(排序原理)

推荐B站大佬的视频讲解: https://www.bilibili.com/video/BV1hE411x7f7?from=search&seid=6488010905221350651

设数组 a a a, b b b c c c

a [ <mtext>   </mtext> ] a 1 < = a 2 < = a 3 . . . . < = a n <mtext>    </mtext> a [ <mtext>   </mtext> ] a[~]为a_1<=a_2<=a_3....<=a_n~~a[~]数组递增 a[ ]a1<=a2<=a3....<=an  a[ ]

b [ <mtext>   </mtext> ] b 1 < = b 2 < = b 3 . . . . < = b n <mtext>    </mtext> b [ <mtext>   </mtext> ] b[~]为b_1<=b_2<=b_3....<=b_n~~b[~]数组递增 b[ ]b1<=b2<=b3....<=bn  b[ ]

c [ <mtext>   </mtext> ] b [ <mtext>   </mtext> ] c[~]为b[~]数组的一个排列 c[ ]b[ ]

S 1 = a 1 b n + a 2 b n 1 + a 3 b n 2 + . . . + a n b 1 S_1=a_1*b_n + a_2*b_{n-1} + a_3*b_{n-2} + ...+a_n*b_1 S1=a1bn+a2bn1+a3bn2+...+anb1 (反序和)

S = a 1 c 1 + a 2 c 2 + a 3 c 3 + . . . . . a n c n S=a_1*c_1+a_2*c_2+a_3*c_3+.....a_n*c_n S=a1c1+a2c2+a3c3+.....ancn (乱序和)

S 2 = a 1 b 1 + a 2 b 2 + a 3 b 3 + . . . . . . + a n b n S_2=a_1*b_1+a_2*b_2+a_3*b_3+......+a_n*b_n S2=a1b1+a2b2+a3b3+......+anbn (顺序和)

S 1 < = S < = S 2 S_1<=S<=S2 S1<=S<=S2

即 : 反序和 <= 乱序和 <= 顺序和

可用排序原理证明

  • a 2 + b 2 > = 2 a b a^2+b^2>=2ab a2+b2>=2ab (均值不等式)
  • a 2 + b 2 + c 2 > = a b + b c + c a a^2+b^2+c^2>=ab+bc+ca a2+b2+c2>=ab+bc+ca

打水问题, n n n个人排队打水,第 i i i个人要等 a [ i ] a[i] a[i]的单位时间,如何才能使得所有人的等待时间最小
很明显让最快的人先打水更优