def compressed_row_sparse_matrix(dense_matrix):
vocter = [item for subvc in dense_matrix for item in subvc]
vals = []
col_idx = []
row_ptr = [0]
p = 0
for k, i in enumerate(vocter):
if i != 0:
col_idx.append(k%len(dense_matrix[0]))
vals.append(i)
p += 1
if k >= len(dense_matrix[0]) and vocter[k-1] == 0:
row_ptr.append(p-1)
row_ptr.append(len(vals))
return vals, col_idx, row_ptr
if __name__ == "__main__":
dense_matrix = eval(input())
vals, col_idx, row_ptr = compressed_row_sparse_matrix(dense_matrix)
print(vals)
print(col_idx)
print(row_ptr)