「JOISC 2016 Day 3」回转寿司
这题我无力吐槽了...
强烈谴责出题人用脚造数据

解法

其实这题主要还是部分分启发正解吧。看到有个\(s_i = 1, t_i= n\)的做法就是维护一个堆就可以了,所以扩展下就是分块,然后每个块维护一个堆。散块暴力,大块直接查。但是有个很坑爹的问题在于,对于整块的部分我们没办法去修改,这个就很难受了。如果不去修改,在查询这个块为零散块的时候就没法暴力了。这也是我考试的时候的瓶颈。所以我这里觉得题解还是很妙的。把每一次修改的标记打在块上,对每个块开个\(vector\)维护这个块上的标记。在需要对这个块暴力的时候就进行下传。下传的时候也是从左到右从小到大更新就做完了。本来我看前方大佬被卡常数,我就写了带删除的堆,没想到这个地方要构造小根堆又把我玩炸了。于是看看标程,发现这个写法还挺香的

代码

#include <cstdio>
#include <cmath>
#include <queue>
#include <vector>
#include <cstring>
#include <algorithm>

using namespace std;

#define R register
#define LL long long
const int inf = 0x3f3f3f3f;
const int N = 4e5 + 10;
const int B = 800 + 5;

inline int read() {
	char a = getchar(); int x = 0,f = 1;
	for(; a > '9' || a < '0'; a = getchar()) if(a == '-') f = -1;
	for(; a >= '0' && a <= '9' ;a = getchar()) x = x * 10 + a - '0';
	return x * f;
}

int n, q, Siz;
int whi[N], a[N];
priority_queue<int> Q[B];
vector<int> Tag[B];

inline void build(int id) {
	int l = (id - 1) * Siz + 1, r = min( id * Siz, n);
	Q[id] = priority_queue<int>(a + l, a + r + 1);
}

inline void DEBUG() {
	for(R int i = 1; i <= 4; i ++) {
		while(Q[i].size()) printf("%d\n",Q[i].top()), Q[i].pop();
	}
}

inline void Init() {
	n = read(); q = read(); Siz = sqrt(n);
	for(R int i = 1; i <= n; i ++) whi[i] = (i - 1) / Siz + 1;
	for(R int i = 1; i <= n; i ++) a[i] = read();
	for(R int i = 1; i <= whi[n]; i ++) build(i);
}

inline void rebuild(int id) {
	if(Tag[id].empty()) return ;
	int l = (id - 1) * Siz + 1, r = min(id * Siz, n);
	priority_queue<int, vector<int>, greater<int> > QT(Tag[id].begin(), Tag[id].end());
	for(R int i = l; i <= r; i ++) {
		int y = QT.top();
		if(y < a[i]) {
			QT.pop();
			swap(a[i], y);
			QT.push(y);
		}
	}
	build(id);
	Tag[id].clear();
}

inline int oper(int id, int p) {
	int x = Q[id].top();
	if(p >= x) return p;
	Tag[id].push_back(p);
	Q[id].pop();
	Q[id].push(p);
	return x;
}

inline int ask(int s, int t, int p) {
	int l = whi[s], r = whi[t];
	rebuild(l); rebuild(r);
	for(R int i = s; i <= l * Siz && i <= t; i ++) if(p < a[i]) swap(p, a[i]);
	build(l);
	for(R int i = l + 1; i <= r - 1; i ++) p = oper(i, p);
	if(r > l) {
		for(R int i = (r - 1) * Siz + 1; i <= t; i ++) if(p < a[i]) swap(p, a[i]);
		build(r);
	}
	return p;
}

inline void Solve() {
	while(q --) {
		int l = read(), r = read(), p = read();
		if(l <= r) printf("%d\n", ask(l, r, p));
		else {
			int tp = ask(l, n, p);
			printf("%d\n", ask(1, r, tp));
		}
	}
}

int main() {
	freopen("3.in","r",stdin);
	//freopen("sushi.out","w",stdout);
	Init();
	Solve(); 
	return 0;	
}