题目描述



Solution









#pragma GCC target("avx,sse2,sse3,sse4,popcnt")
#pragma GCC optimize("O2,O3,Ofast,inline,unroll-all-loops,-ffast-math")
#include <bits/stdc++.h>
using namespace std;
#define js ios::sync_with_stdio(false);cin.tie(0); cout.tie(0)
#define all(__vv__) (__vv__).begin(), (__vv__).end()
#define endl "\n"
#define pai pair<int, int>
#define mk(__x__,__y__) make_pair(__x__,__y__)
#define ms(__x__,__val__) memset(__x__, __val__, sizeof(__x__))
typedef long long ll; typedef unsigned long long ull; typedef long double ld;
inline ll read() { ll s = 0, w = 1; char ch = getchar(); for (; !isdigit(ch); ch = getchar()) if (ch == '-') w = -1; for (; isdigit(ch); ch = getchar())    s = (s << 1) + (s << 3) + (ch ^ 48); return s * w; }
inline void print(ll x) { if (!x) { putchar('0'); return; } char F[40]; ll tmp = x > 0 ? x : -x; if (x < 0)putchar('-');    int cnt = 0;    while (tmp > 0) { F[cnt++] = tmp % 10 + '0';        tmp /= 10; }    while (cnt > 0)putchar(F[--cnt]); }
inline ll gcd(ll x, ll y) { return y ? gcd(y, x % y) : x; }
ll qpow(ll a, ll b) { ll ans = 1;    while (b) { if (b & 1)    ans *= a;        b >>= 1;        a *= a; }    return ans; }    ll qpow(ll a, ll b, ll mod) { ll ans = 1; while (b) { if (b & 1)(ans *= a) %= mod; b >>= 1; (a *= a) %= mod; }return ans % mod; }
inline int lowbit(int x) { return x & (-x); }
const int dir[][2] = { {0,1},{1,0},{0,-1},{-1,0},{1,1},{1,-1},{-1,1},{-1,-1} };
const int MOD = 1e9 + 7;
const int INF = 0x3f3f3f3f;

const int N = 50 + 7;
const int M = 1300 + 7;
int f[N];
int mp[N][N];
int dp[N][N][M];

int main() {
    for (int i = 1; i < N; ++i)    f[i] = f[i - 1] + i; //预处理第i层的最小技能点
    int n, m;
    while (~scanf("%d %d", &n, &m)) {
        for (int i = 1; i <= n; ++i)
            for (int j = 1; j <= n - i + 1; ++j)
                mp[i][j] = read() + mp[i - 1][j];
        ms(dp, 0);
        int ans = 0;
        for (int i = n; i; --i) { //列
            for (int j = 0; j <= n - i + 1; ++j) { //行
                for (int k = f[j]; k <= m; ++k) { //技能点
                    for (int p = max(j - 1, 0); p < n - i + 1; ++p)
                        dp[i][j][k] = max(dp[i][j][k], dp[i + 1][p][k - j] + mp[j][i]);
                }
                ans = max(ans, dp[i][j][m]);
            }
        }
        print(ans), putchar(10);
    }
    return 0;
}