Description
设d(x)为x的约数个数,给定N、M,求
\[ \sum_{i=1}^{n}\sum_{j=1}^md(i*j) \]
Input
输入文件包含多组测试数据。
第一行,一个整数T,表示测试数据的组数。
接下来的T行,每行两个整数N、M。
Output
T行,每行一个整数,表示你所求的答案。
Sample Input
2
7 4
5 6
Sample Output
110
121
HINT
1<=N, M<=50000
1<=T<=50000
Solution
做这题首先要知道约数函数\(d(x)\)的一个性质,不然完全做不下去
注:\((x,y)\)表示\(gcd(x,y)\)
\[ \large d(i*j)=\sum_{x|i}\sum_{y|j}[(x,y)=1] \]
证明的话..不难理解,但是写一遍很麻烦,所以直接看这篇文章吧...
https://blog.csdn.net/ab_ever/article/details/76737617
所以我们就可以开始推式子了
\[ \large{ \begin{aligned} &\sum_{i=1}^{n}\sum_{j=1}^md(i*j)\\ &=\sum_{i=1}^{n}\sum_{j=1}^m\sum_{x|i}\sum_{y|j}[(x,y)=1]\\ &=\sum_{x=1}^{n}\sum_{y=1}^{m}\sum_{i=1}^{\lfloor\frac{n}{x}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{y}\rfloor}[(x,y)=1]\\ &=\sum_{x=1}^{n}\sum_{y=1}^{m}\lfloor\frac{n}{x}\rfloor\lfloor\frac{m}{y}\rfloor[(x,y)=1]\\ &=\sum_{x=1}^{n}\sum_{y=1}^{m}\lfloor\frac{n}{x}\rfloor\lfloor\frac{m}{y}\rfloor\sum_{d|(x,y)}\mu(d)\\ &=\sum_{d=1}^{n}\sum_{x=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{y=1}^{\lfloor\frac{m}{d}\rfloor}\lfloor\frac{n}{dx}\rfloor\lfloor\frac{m}{dy}\rfloor*\mu(d)\\ &=\sum_{d=1}^{n}\mu(d)\sum_{x=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{y=1}^{\lfloor\frac{m}{d}\rfloor}\lfloor\frac{n}{dx}\rfloor\lfloor\frac{m}{dy}\rfloor\\ &=\sum_{d=1}^{n}\mu(d)\sum_{x=1}^{\lfloor\frac{n}{d}\rfloor}\lfloor\frac{n}{dx}\rfloor\sum_{y=1}^{\lfloor\frac{m}{d}\rfloor}\lfloor\frac{m}{dy}\rfloor\\ \end{aligned}\\ 设g(x)=\sum_{i=1}^{n}{\lfloor\frac{n}{i}\rfloor}\\ 则代入原式可得\\ \begin{aligned} &\sum_{d=1}^{n}\mu(d)\sum_{x=1}^{\lfloor\frac{n}{d}\rfloor}\lfloor\frac{n}{dx}\rfloor\sum_{y=1}^{\lfloor\frac{m}{d}\rfloor}\lfloor\frac{m}{dy}\rfloor\\ &=\sum_{d=1}^{n}\mu(d)*g(\lfloor\frac{n}{d}\rfloor)*g(\lfloor\frac{m}{d}\rfloor) \end{aligned} } \]
那么处理g的函数值和莫比乌斯函数的函数值,就可以\(O(T\sqrt{n})\)处理了
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define N 50010
int p[N], vis[N], mu[N], sum[N];
int n, m, cnt;
ll ans = 0, g[N];
void init() {
mu[1] = 1;
for(int i = 2; i < N; ++i) {
if(!vis[i]) p[++cnt] = i, mu[i] = -1;
for(int j = 1; j <= cnt && i * p[j] < N; ++j) {
vis[i * p[j]] = 1;
if(i % p[j] == 0) break;
mu[i * p[j]] -= mu[i];
}
}
for(int i = 1; i < N; ++i) {
sum[i] = sum[i - 1] + mu[i];
for(int l = 1, r; l <= i; l = r + 1) {
r = i / (i / l);
g[i] += 1ll * (r - l + 1) * (i / l);
}
}
}
int main() {
init();
int T;
scanf("%d", &T);
while(T--) {
scanf("%d%d", &n, &m);
if(n > m) swap(n, m);
ans = 0;
for(int l = 1, r; l <= n; l = r + 1) {
r = min(n/(n/l), m/(m/l));
ans += 1ll * (sum[r] - sum[l - 1]) * g[n / l] * g[m / l];
// printf("%d %d %d\n", (sum[r] - sum[l - 1]), g[n / l], g[m / l]);
}
printf("%lld\n", ans);
}
return 0;
}