实现原理来自于https://blog.csdn.net/hrn1216/article/details/51534607
采用动态规划求得最大公共子序列的长度 根据dp数组进行递归反推到相等节点
import java.util.*;
public class Solution {
public static void main(String[] args) { String str = LCS("1A2C3D4B56", "B1D23CA45B6A"); System.out.println(str); } /** * longest common subsequence * * @param s1 * string字符串 the string * @param s2 * string字符串 the string * @return string字符串 */ public static String LCS(String s1, String s2) { char[] cs1 = s1.toCharArray(); char[] cs2 = s2.toCharArray(); int[][] dp = new int[s1.length() + 1][s2.length() + 1]; for (int i = 0; i < dp.length; i++) { dp[i][0] = 0; } for (int j = 0; j < dp[0].length; j++) { dp[0][j] = 0; } for (int i = 1; i < dp.length; i++) { for (int j = 1; j < dp[0].length; j++) { if (cs1[i - 1] == cs2[j - 1]) { dp[i][j] = dp[i - 1][j - 1] + 1; } else { dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]); } } } int len = dp[s1.length()][s2.length()]; char[] lcs = new char[len]; createLCS(cs1, cs2, dp, s1.length(), s2.length(), lcs, len); return new String(lcs); } public static void createLCS(char[] cs1, char[] cs2, int[][] dp, int x, int y, char[] lcs, int len) { if (x < 1 || y < 1 || len < 0) { return; } if (cs1[x - 1] == cs2[y - 1]) { lcs[--len] = cs1[x - 1]; // 如果相等来源于左上角元素 createLCS(cs1, cs2, dp, x - 1, y - 1, lcs, len); } else { if (dp[x][y] == dp[x][y - 1]) {// 不相等来源于左边 createLCS(cs1, cs2, dp, x, y - 1, lcs, len); return; } if (dp[x][y] == dp[x - 1][y]) {// 不相等来源于上边 createLCS(cs1, cs2, dp, x - 1, y, lcs, len); return; } } } /** * longest common subsequence * * @param s1 * string字符串 the string * @param s2 * string字符串 the string * @return string字符串 */ public static int LCSLength(String s1, String s2) { char[] cs1 = s1.toCharArray(); char[] cs2 = s2.toCharArray(); int[][] dp = new int[s1.length() + 1][s2.length() + 1]; for (int i = 0; i < dp.length; i++) { dp[i][0] = 0; } for (int j = 0; j < dp[0].length; j++) { dp[0][j] = 0; } for (int i = 1; i < dp.length; i++) { for (int j = 1; j < dp[0].length; j++) { if (cs1[i - 1] == cs2[j - 1]) { dp[i][j] = dp[i - 1][j - 1] + 1; } else { dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]); } } } return dp[s1.length()][s2.length()]; }
}