LeetCode 0053. Maximum Subarray最大子序和【Easy】【Python】【动态规划】

Problem

LeetCode

Given an integer array nums, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.

Example:

Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.

Follow up:

If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

问题

力扣

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:

输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

进阶:

如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。

思路

动态规划

找到 dp 递推公式。dp 等于每个位置的数字加上前面的 dp,当前面的 dp 是负数时就不要加了。

时间复杂度: O(len(nums))
空间复杂度: O(1)

Python代码

class Solution(object):
    def maxSubArray(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        if not nums:
            return 0
        dp = 0
        sum = -0xFFFFFFFF
        for i in range(len(nums)):
            dp = nums[i] + (dp if dp > 0 else 0)  # if dp > 0: dp = nums[i] + dp, else: dp = nums[i]
            sum = max(sum, dp)
        return sum

代码地址

GitHub链接