Redis是内存型数据库,为了使Redis在重启之后仍能保证数据不丢失,需要将数据从内存中同步到硬盘中,这一过程就是持久化。
Redis支持两种持久化的方式,一种是RDB持久化,另一种是AOF持久化,可以单独使用其中一种或将二者结合使用,或者关闭持久化功能。
Redis 持久化
Redis持久化提供了多种方式:
- RDB 持久化可以在指定的时间间隔内生成数据集的时间点快照(point-in-time snapshot)。
- AOF 持久化记录服务器执行的所有写操作命令,并在服务器启动时,通过重新执行这些命令来还原数据集。 AOF 文件中的命令全部以 Redis 协议的格式来保存,将写命令添加到 AOF 文件(Append Only File)的末尾。 Redis 还可以在后台对 AOF 文件进行重写(rewrite),使得 AOF 文件的体积不会超出保存数据集状态所需的实际大小。
- Redis 可以同时使用 AOF 持久化和 RDB 持久化。 在这种情况下, 当 Redis 重启时, 它会优先使用 AOF 文件来还原数据集, 因为 AOF 文件保存的数据集通常比 RDB 文件所保存的数据集更完整。
- 关闭持久化功能,让数据只在服务器运行时存在。
RDB持久化
在默认情况下, Redis 将数据库快照保存在名字为 dump.rdb 的二进制文件中。
可以对 Redis 进行设置, 让它在“ N 秒内数据集至少有 M 个改动”这一条件被满足时, 自动保存一次数据集。
你也可以通过调用 SAVE 或者 BGSAVE , 手动让 Redis 进行数据集保存操作。
比如说, 以下设置会让 Redis 在满足“ 60 秒内有至少有 1000 个键被改动”这一条件时, 自动保存一次数据集:
save 60 1000
这种持久化方式被称为快照(snapshot)。
Redis.conf配置 :默认是如下配置
save 900 1 save 300 10 save 60 10000
- 900秒之内,如果超过1个key被修改,则发起快照保存
- 300秒内,如果超过10个key被修改,则发起快照保存
- 1分钟之内,如果1万个key被修改,则发起快照保存
RDB工作机制
当 Redis 需要保存 dump.rdb 文件时, 服务器执行以下操作:
- Redis 调用 fork() ,同时拥有父进程和子进程。
- 子进程将数据集写入到一个临时 RDB 文件中。
- 当子进程完成对新 RDB 文件的写入时,Redis 用新 RDB 文件替换原来的 RDB 文件,并删除旧的 RDB 文件。
这样的好处就是可以 copy-on-write。
RDB的优点
- RDB 是一个非常紧凑(compact)的文件,它保存了 Redis 在某个时间点上的数据集。 这种文件非常适合用于进行备份。
- RDB 非常适用于灾难恢复(disaster recovery):它只有一个文件,并且内容都非常紧凑,可以(在加密后)将它传送到别的数据中心(存储介质)。
- RDB 可以最大化 Redis 的性能:父进程在保存 RDB 文件时唯一要做的就是 fork 出一个子进程,然后这个子进程就会处理接下来的所有保存工作,父进程无须执行任何磁盘 I/O 操作。
- RDB 在恢复大数据集时的速度比 AOF 的恢复速度要快。
RDB的缺点
- 如果你需要尽量避免在服务器故障时丢失数据,那么 RDB 不适合你。 虽然 Redis 允许你设置不同的保存点(save point)来控制保存 RDB 文件的频率, 但是, 因为RDB 文件需要保存整个数据集的状态, 所以它并不是一个轻松的操作。 因此你可能会至少 5 分钟才保存一次 RDB 文件。 在这种情况下, 一旦发生故障停机, 你就可能会丢失好几分钟的数据。
- 每次保存 RDB 的时候,Redis 都要 fork() 出一个子进程,并由子进程来进行实际的持久化工作。 在数据集比较庞大时, fork() 可能会非常耗时,造成服务器在某某毫秒内停止处理客户端; 如果数据集非常巨大,并且 CPU 时间非常紧张的话,那么这种停止时间甚至可能会长达整整一秒。 虽然 AOF 重写也需要进行 fork() ,但无论 AOF 重写的执行间隔有多长,数据的耐久性都不会有任何损失。
AOF持久化
AOF 持久化,每一个写命令都通过write函数追加到 appendonly.aof 中。
可以通过修改配置文件来打开 AOF 功能:
appendfsync yes
配置完成后,AOF 就可以做到全程持久化,只需要在配置文件中设置appendonly yes(默认为no),开启 AOF 之后,Redis 每执行一个修改数据的命令,都会把它添加到 AOF 文件中,当 Redis 重启时,程序就可以通过重新执行 AOF 文件中的命令来达到重建数据集的目的。
Redis.conf默认配置
appendfsync no #让操作系统来决定何时同步 appendfsync always #每次有数据修改发生时都会写入AOF文件 appendfsync everysec #每秒钟同步一次,该策略为AOF的缺省策略 ```| 选项 | 同步频率 | always 每个写命令都同步 everysec 每秒同步一次 no 让操作系统来决定何时同步 always 选项会严重减低服务器的性能;everysec 选项比较合适,可以保证系统奔溃时只会丢失一秒左右的数据,并且 Redis 每秒执行一次同步对服务器性能几乎没有任何影响;no 选项并不能给服务器性能带来多大的提升,而且也会增加系统奔溃时数据丢失的数量。 随着服务器写请求的增多,AOF 文件会越来越大;Redis 提供了一种将 AOF 重写的特性,能够去除 AOF 文件中的冗余写命令。 ### AOF重写 因为 AOF 的运作方式是不断地将命令追加到文件的末尾, 所以随着写入命令的不断增加, AOF 文件的体积也会变得越来越大。 例如, 如果你对一个计数器调用了 100 次 INCR , 那么仅仅是为了保存这个计数器的当前值, AOF 文件就需要使用 100 条记录(entry)。 然而在实际上, 只使用一条 SET 命令已经足以保存计数器的当前值了, 其余 99 条记录实际上都是多余的。 为了处理这种情况, Redis 支持一种有趣的特性: 可以在不打断服务客户端的情况下, 对 AOF 文件进行重建(rebuild)。 执行 BGREWRITEAOF 命令, Redis 将生成一个新的 AOF 文件, 这个文件包含重建当前数据集所需的最少命令。 Redis 2.2 需要自己手动执行 BGREWRITEAOF 命令; Redis 2.4 则可以自动触发 AOF 重写, redis.conf配置文件如下。
自动重写AOF文件
如果AOF日志文件大到指定百分比,Redis能够通过 BGREWRITEAOF 自动重写AOF日志文件。
工作原理:Redis记住上次重写时AOF日志的大小(或者重启后没有写操作的话,那就直接用此时的AOF文件),
基准尺寸和当前尺寸做比较。如果当前尺寸超过指定比例,就会触发重写操作。
你还需要指定被重写日志的最小尺寸,这样避免了达到约定百分比但尺寸仍然很小的情况还要重写。
指定百分比为0会禁用AOF自动重写特性。
auto-aof-rewrite-percentage 100
auto-aof-rewrite-min-size 64mb
```
AOF工作机制
- Redis 执行 fork() ,现在同时拥有父进程和子进程。
- 子进程开始将新 AOF 文件的内容写入到临时文件。
- 对于所有新执行的写入命令,父进程一边将它们累积到一个内存缓存中,一边将这些改动追加到现有 AOF 文件的末尾: 这样即使在重写的中途发生停机,现有的 AOF 文件也还是安全的。
- 当子进程完成重写工作时,它给父进程发送一个信号,父进程在接收到信号之后,将内存缓存中的所有数据追加到新 AOF 文件的末尾。
- Redis 用新文件替换旧文件,之后所有命令都会直接追加到新 AOF 文件的末尾。
AOF的优点
- 使用 AOF 持久化会让 Redis 变得非常耐久(much more durable):你可以设置不同的 fsync 策略,比如无 fsync ,每秒钟一次 fsync ,或者每次执行写入命令时 fsync 。 AOF 的默认策略为每秒钟 fsync 一次,在这种配置下,Redis 仍然可以保持良好的性能,并且就算发生故障停机,也最多只会丢失一秒钟的数据( fsync 会在后台线程执行,所以主线程可以继续努力地处理命令请求)。
- AOF 文件是一个只进行追加操作的日志文件(append only log), 因此对 AOF 文件的写入不需要进行 seek , 即使日志因为某些原因而包含了未写入完整的命令(比如写入时磁盘已满,写入中途停机,等等), redis-check-aof 工具也可以轻易地修复这种问题。
- Redis 可以在 AOF 文件体积变得过大时,自动地在后台对 AOF 进行重写: 重写后的新 AOF 文件包含了恢复当前数据集所需的最小命令集合。 整个重写操作是绝对安全的,因为 Redis 在创建新 AOF 文件的过程中,会继续将命令追加到现有的 AOF 文件里面,即使重写过程中发生停机,现有的 AOF 文件也不会丢失。 而一旦新 AOF 文件创建完毕,Redis 就会从旧 AOF 文件切换到新 AOF 文件,并开始对新 AOF 文件进行追加操作。
- AOF 文件有序地保存了对数据库执行的所有写入操作, 这些写入操作以 Redis 协议的格式保存, 因此 AOF 文件的内容非常容易被人读懂, 对文件进行分析(parse)也很轻松。 导出(export) AOF 文件也非常简单: 举个例子, 如果你不小心执行了 FLUSHALL 命令, 但只要 AOF 文件未被重写, 那么只要停止服务器, 移除 AOF 文件末尾的 FLUSHALL 命令, 并重启 Redis , 就可以将数据集恢复到 FLUSHALL 执行之前的状态。
AOF的缺点
- 对于相同的数据集来说,AOF 文件的体积通常要大于 RDB 文件的体积。
- 根据所使用的 fsync 策略,AOF 的速度可能会慢于 RDB 。 在一般情况下, 每秒 fsync 的性能依然非常高, 而关闭 fsync 可以让 AOF 的速度和 RDB 一样快, 即使在高负荷之下也是如此。 不过在处理巨大的写入载入时,RDB 可以提供更有保证的最大延迟时间(latency)。
- AOF 在过去曾经发生过这样的 bug : 因为个别命令的原因,导致 AOF 文件在重新载入时,无法将数据集恢复成保存时的原样。 (举个例子,阻塞命令 BRPOPLPUSH 就曾经引起过这样的 bug 。) 测试套件里为这种情况添加了测试: 它们会自动生成随机的、复杂的数据集, 并通过重新载入这些数据来确保一切正常。 虽然这种 bug 在 AOF 文件中并不常见, 但是对比来说, RDB 几乎是不可能出现这种 bug 的。
RDB 和 AOF 的选择
- 如果可以承受数分钟以内的数据丢失,那么你可以只使用 RDB 持久。
- AOF 将 Redis 执行的每一条命令追加到磁盘中,处理巨大的写入会降低 Redis 的性能。
- Redis 支持同时开启 RDB 和 AOF,系统重启后,Redis 会优先使用 AOF 来恢复数据,这样丢失的数据会最少。