使用确定有限状态自动机方法求解,根据描述确认好初始状态和接收状态:
class Solution {
public:
enum State {
STATE_INITIAL,
STATE_INT_SIGN,
STATE_INTEGER,
STATE_POINT,
STATE_POINT_WITHOUT_INT,
STATE_FRACTION,
STATE_EXP,
STATE_EXP_SIGN,
STATE_EXP_NUMBER,
STATE_END
};
enum CharType {
CHAR_NUMBER,
CHAR_EXP,
CHAR_POINT,
CHAR_SIGN,
CHAR_SPACE,
CHAR_ILLEGAL
};
CharType toCharType(char ch) {
if (ch >= '0' && ch <= '9') {
return CHAR_NUMBER;
} else if (ch == 'e' || ch == 'E') {
return CHAR_EXP;
} else if (ch == '.') {
return CHAR_POINT;
} else if (ch == '+' || ch == '-') {
return CHAR_SIGN;
} else if (ch == ' ') {
return CHAR_SPACE;
} else {
return CHAR_ILLEGAL;
}
}
bool isNumeric(string s) {
unordered_map<State, unordered_map<CharType, State>> transfer{
{
STATE_INITIAL, {
{CHAR_SPACE, STATE_INITIAL},
{CHAR_NUMBER, STATE_INTEGER},
{CHAR_POINT, STATE_POINT_WITHOUT_INT},
{CHAR_SIGN, STATE_INT_SIGN}
}
}, {
STATE_INT_SIGN, {
{CHAR_NUMBER, STATE_INTEGER},
{CHAR_POINT, STATE_POINT_WITHOUT_INT}
}
}, {
STATE_INTEGER, {
{CHAR_NUMBER, STATE_INTEGER},
{CHAR_EXP, STATE_EXP},
{CHAR_POINT, STATE_POINT},
{CHAR_SPACE, STATE_END}
}
}, {
STATE_POINT, {
{CHAR_NUMBER, STATE_FRACTION},
{CHAR_EXP, STATE_EXP},
{CHAR_SPACE, STATE_END}
}
}, {
STATE_POINT_WITHOUT_INT, {
{CHAR_NUMBER, STATE_FRACTION}
}
}, {
STATE_FRACTION,
{
{CHAR_NUMBER, STATE_FRACTION},
{CHAR_EXP, STATE_EXP},
{CHAR_SPACE, STATE_END}
}
}, {
STATE_EXP,
{
{CHAR_NUMBER, STATE_EXP_NUMBER},
{CHAR_SIGN, STATE_EXP_SIGN}
}
}, {
STATE_EXP_SIGN, {
{CHAR_NUMBER, STATE_EXP_NUMBER}
}
}, {
STATE_EXP_NUMBER, {
{CHAR_NUMBER, STATE_EXP_NUMBER},
{CHAR_SPACE, STATE_END}
}
}, {
STATE_END, {
{CHAR_SPACE, STATE_END}
}
}
};
int len = s.length();
State st = STATE_INITIAL;
for (int i = 0; i < len; i++) {
CharType typ = toCharType(s[i]);
if (transfer[st].find(typ) == transfer[st].end()) {
return false;
} else {
st = transfer[st][typ];
}
}
return st == STATE_INTEGER || st == STATE_POINT || st == STATE_FRACTION || st == STATE_EXP_NUMBER || st == STATE_END;
}
};