import numpy as np
def matrix_image(A):
mat = np.array(A, dtype=np.float64).copy()
row, col = mat.shape
pivot_cols = []
cur_row = 0
for c in range(col):
pivot_row = -1
for r in range(cur_row, row):
if abs(mat[r, c]) > 1e-8:
pivot_row = r
break
if pivot_row == -1:
continue
mat[[cur_row, pivot_row], :] = mat[[pivot_row, cur_row], :]
for r in range(cur_row + 1, row):
factor = mat[r, c] / mat[cur_row, c]
mat[r, :] = mat[r, :] - factor * mat[cur_row, :]
pivot_cols.append(c)
cur_row += 1
if cur_row >= row:
break
res = np.array(A)[:, pivot_cols]
return res
if __name__ == "__main__":
A = np.array(eval(input()))
print(matrix_image(A))