#include<iostream> #include<string> const int MAX = 100; int n; int cnt; int a, b; int Graph[MAX][MAX]; int m_Father[MAX];//每个集合的父节点,下标表示节点代号,数组值表示节点父节点代号 int m_Height[MAX];//记录每个集合高度,实现低树向高树合并 int Find(int x) { if(x != m_Father[x]) { m_Father[x] = Find(m_Father[x]); } return m_Father[x]; } void Union(int x,int y) { int x_father = Find(x); int y_father = Find(y); if(x_father != y_father) { if(m_Height[x_father] < m_Height[y_father]) { m_Father[x_father] = y_father; }else if(m_Height[x_father] > m_Height[y_father]) { m_Father[y_father] = x_father; }else{ m_Father[y_father] = x_father; m_Height[x_father]++; } } } //可以利用定义结构体,然后初始排序优化时间,但需要改变初始存储结构 int FindMin()//找到最小值,同时将横纵下标赋值给全局变量a,b; { int min = INT_MAX; for(int i=1;i<=n;i++) { for(int j=i+1;j<=n;j++) { if(min > Graph[i][j]) { min = Graph[i][j]; a=i; b=j; } } } Graph[a][b] = INT_MAX; return min; } void Initial() { for(int i = 1; i <=n; i++) { for(int j = 1; j <=n; j++) { Graph[i][j] = 0; } } for(int i=1;i <=n;i++) { m_Father[i] = i;//初始时所有节点的父节点都是自己 m_Height[i] = 0;//初始时每个集合的高度都为0 } } int main() { int A, B, distance; while (std::cin >> n) { if(n == 0) break; cnt = 0; int num = n*(n-1)/2; Initial(); for(int i = 0;i < num;i++) { std::cin >> A >> B >> distance; Graph[A][B] = distance; Graph[B][A] = distance; } int min; for(int i = 0;i < num;i++)//使用kruskal算法,每次从不同的集合取一条边加入最小生成树中 { min = FindMin(); if(Find(a) != Find(b)) { cnt += min; Union(a, b); } } std::cout << cnt << std::endl; } }